【題目】從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.

(1)求頻率分布直方圖中的值;

(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;

(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.

【答案】(1);(2)0.7;(3)

【解析】

試題分析:(1)利用頻率分布直方圖中小矩形的高的實(shí)際意義進(jìn)行求解;(2)利用頻率來估計(jì)概率;(3)先利用分層抽樣得到各層抽得的人數(shù),列舉出所有基本事件和滿足要求的基本事件,再利用古典概型的概率公式進(jìn)行求解.

試題解析:(1)因?yàn)闃颖局屑彝ピ戮盟吭?/span>上的頻率為,

上的頻率為,

所以,.………………2分

(2)根據(jù)頻數(shù)分布表,40個(gè)家庭中月均用水量不低于6噸的家庭共有16+8+4=28個(gè),

所以樣本中家庭月均用水量不低于6噸的概率是.

利用樣本估計(jì)總體,從該小區(qū)隨機(jī)選取一個(gè)家庭,可估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率約為0.7.………………4分

(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,

則在上應(yīng)抽取人,記為,………………5分

上應(yīng)抽取人,記為,………………6分

上應(yīng)抽取人,記為.………………7分

設(shè)從中任意選取2個(gè)家庭,求其中恰有1個(gè)家庭的月均用水量不低于8噸為事件,

則所有基本事件有:

,共21種.…………9分

事件包含的基本事件有:,

共12種.………………11分

所以其中恰有一個(gè)家庭的月均用水量不低于8噸的概率為.………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn).

求證:

求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最大值為.

1)求橢圓的方程;

2)已知點(diǎn)是線段上異于的一個(gè)定點(diǎn)(為坐標(biāo)原點(diǎn)),是否存在過點(diǎn)且與軸不垂直的直線與橢圓交于兩點(diǎn),使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知?jiǎng)又本過點(diǎn),且與圓交于、兩點(diǎn).

(1)若直線的斜率為,求的面積;

(2)若直線的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;

(3)是否存在一個(gè)定點(diǎn)(不同于點(diǎn)),對(duì)于任意不與軸重合的直線,都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長為a的正方形,側(cè)棱PDa,PAPCa

(1)求證:PD⊥平面ABCD;

(2)求證:平面PAC⊥平面PBD;

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為直角梯形,平面 ,的中點(diǎn),

1求證:平面

2設(shè),求點(diǎn)到平面 的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCDCD上異于點(diǎn)CD的動(dòng)點(diǎn),將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個(gè)說法中正確的個(gè)數(shù)是

存在點(diǎn)E使得直線SA平面SBC

平面SBC內(nèi)存在直線與SA平行

平面ABCE內(nèi)存在直線與平面SAE平行

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)在高校自主招生期間,把學(xué)生的平時(shí)成績按百分制折算并排序,選出前300名學(xué)生,并對(duì)這300名學(xué)生按成績分組,第一組,第二組,第三組,第四組,第五組,如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列

I請(qǐng)?jiān)趫D中補(bǔ)全頻率直方圖;

II大學(xué)決定在成績高的第4,5組中用分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人進(jìn)行面試,求95分包括95分以上的同學(xué)被分在同一個(gè)小組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小值為0,其中,設(shè)

1的值;

2對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;

3討論方程上根的個(gè)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案