【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數是( )
①存在點E使得直線SA⊥平面SBC
②平面SBC內存在直線與SA平行
③平面ABCE內存在直線與平面SAE平行
A.0 B.1 C.2 D.3
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數據,整理得到頻數分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家發(fā)現,學生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,并趨于穩(wěn)定.分析結果和實驗表明,設提出和講述概念的時間為(單位:分),學生的接受能力為 (值越大,表示接受能力越強),
(1)開講后多少分鐘,學生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學生的接受能力的大。唬3)若一個數學難題,需要56的接受能力以及12分鐘時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講述完這個難題?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數據見下表(單位:人)
高校 | 相關人數 | 抽取人數 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖:
(Ⅰ)求直方圖中的值;
(Ⅱ)求月平均用電量的眾數和中位數;
(Ⅲ)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=-3x2+a(6-a)x+6.
(1)解關于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集為(-1,3),求實數a,b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com