18.圓的方程為x2+y2-6x-8y=0,過坐標(biāo)原點(diǎn)作長度為6的弦,則弦所在的直線方程為y=0或24x-7y=0.

分析 求出圓心,半徑,設(shè)直線方程,注意斜率存在時(shí)設(shè)為k,用圓心到直線的距離公式,求出k的值可得直線方程.

解答 解:x2+y2-6x-8y=0即(x-3)2+(y-4)2=25,斜率存在時(shí)設(shè)所求直線為y=kx.
∵圓半徑為5,圓心M(3,4)到該直線距離為4,∴d=$\frac{|3k-4|}{\sqrt{1+{k}^{2}}}$=4,
∴9k2-24k+16=16(k2+1),∴k=$\frac{24}{7}$.k=0,∴當(dāng)k=$\frac{24}{7}$,所求直線為y=$\frac{24}{7}$x;當(dāng)k=0時(shí),y=0.
故所求直線為:y=0或24x-7y=0.
故答案為:y=0或24x-7y=0.

點(diǎn)評 本題考查直線和圓的位置關(guān)系,注意設(shè)直線方程時(shí),斜率不存在的情況,否則容易出錯(cuò).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有一段“三段論”推理是這樣的:因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)在(0,+∞)上是增函數(shù),$y={({\frac{1}{2}})^x}$是指數(shù)函數(shù),所以$y={({\frac{1}{2}})^x}$在(0,+∞)上是增函數(shù).以上推理中(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(2x+1)=4x2+4x+3,則f(1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,已知下列條件,解三角形(邊長精確到0.1,角度精確到1°):
(1)a=9,c=7,∠A=30°;
(2)b=$\sqrt{5}$,∠A=45°,∠B=105°;
(3)a=5$\sqrt{2}$,b=4$\sqrt{3}$,∠C=105°;
(4)a=8,b=13,c=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$.
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-1}為等比數(shù)列.
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列,如果存在,請給出證明,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中正確的是( 。
A.函數(shù)y=x+$\frac{1}{x}$的最小值為2B.函數(shù)y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$的最小值為2
C.函數(shù)y=3x+3-x的最小值為2D.函數(shù)y=sinx+$\frac{1}{sinx}$的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊在直線y=$\sqrt{3}$x上,則cos2θ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.光線沿著直線x-2y+1=0射入,遇到直線l:3x-2y+7=0即行反射,求反射光線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若數(shù)列{an}的前n項(xiàng)和Sn=$\frac{5}{2}$(3n-1),則通項(xiàng)公式an=5•3n-1

查看答案和解析>>

同步練習(xí)冊答案