分析 過(guò)A,B作拋物線準(zhǔn)線的垂線,垂足分別為C,D,由AB=3FB,丨AC丨=2丨BD丨,求得丨BE丨,根據(jù)三角形的面積公式,求得p的值,求得直線AB的方程,代入橢圓方程,利用韋達(dá)定理及拋物線的弦長(zhǎng)公式,即可求得丨AB丨.
解答 解:不妨設(shè)直線AB的斜率k>0,過(guò)A,B作拋物線準(zhǔn)線的垂線,垂足分別為C,D,
過(guò)B作BE⊥AC于E,由AB=3FB,
∴$\overrightarrow{AF}$=2$\overrightarrow{FB}$,丨$\overrightarrow{AF}$丨=2丨$\overrightarrow{FB}$丨,即丨AC丨=2丨BD丨,
∴E為AC的中點(diǎn),即丨AE丨=$\frac{1}{3}$丨AB丨,
∴丨BE丨=$\sqrt{丨AB{丨}^{2}-丨AE{丨}^{2}}$=$\frac{2\sqrt{2}}{3}$丨AB丨,
由S△OAB=SOAB+SOAB=$\frac{1}{2}$丨BE丨•丨OF丨=$\frac{\sqrt{2}}{6}$p丨AB丨,S△OAB=$\frac{\sqrt{2}}{3}$丨AB丨,
∴$\frac{\sqrt{2}}{3}$丨AB丨=$\frac{\sqrt{2}}{6}$p丨AB丨,即p=2,
由丨AE丨=$\frac{1}{3}$丨AB丨,則直線AB斜率為kAB=±2$\sqrt{2}$,直線AB的方程y=2$\sqrt{2}$(x-1),
$\left\{\begin{array}{l}{y=2\sqrt{2}(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,整理得:2x2-5x-2=0,
則x1+x2=$\frac{5}{2}$,則丨AB丨=x1+x2+p=$\frac{5}{2}$+2=$\frac{9}{2}$,
故答案為:$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系,考查韋達(dá)定理,拋物線的焦點(diǎn)弦公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\sqrt{3}$,2] | B. | [1,2] | C. | (0,2] | D. | ($\frac{\sqrt{3}}{2}$,1] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com