7.已知tanα=1,化簡:
(1)$\frac{cosα+2sinα}{2cosα-3sinα}$;
(2)sin2α+sin2α.

分析 化簡所求的表達式為正切函數(shù)的形式,代入求解即可.

解答 解:tanα=1,
(1)$\frac{cosα+2sinα}{2cosα-3sinα}$=$\frac{1+2tanα}{2-3tanα}$=$\frac{1+2}{2-3}$=-3;
(2)sin2α+sin2α=$\frac{2sinαcosα+{sin}^{2}α}{{sin}^{2}α+{cos}^{2}α}$=$\frac{2tanα+{tan}^{2}α}{{tan}^{2}α+1}$=$\frac{2+1}{1+1}$=$\frac{3}{2}$.

點評 本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,三角函數(shù)化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)點P為有公共焦點F1、F2的橢圓M和雙曲線Г的一個交點,且cos∠F1PF2=$\frac{3}{5}$,橢圓M的離心率為e1,雙曲線Г的離心率為e2.若e2=2e1,則e1=( 。
A.$\frac{\sqrt{7}}{5}$B.$\frac{\sqrt{7}}{4}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點A(1,-2,2),B(2,-2,-1),C(6,5,2),O為坐標(biāo)原點,則三棱錐O-ABC的體積為( 。
A.$\frac{65}{3}$B.$\frac{\sqrt{65}}{3}$C.$\frac{\sqrt{65}}{6}$D.$\frac{65}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{x^2}{2}$+y2=1與直線y=x+m交于A、B兩點,且|AB|=$\frac{4\sqrt{2}}{3}$,則實數(shù)m的值為( 。
A.±1B.±$\frac{1}{2}$C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=|cosx|(x≥0)的圖象與過原點的直線恰有四個交點,設(shè)四個交點中橫坐標(biāo)最大值為θ,則$\frac{(1+{θ}^{2})sin2θ}{θ}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.化簡:(-3a${\;}^{\frac{1}{3}}$•b${\;}^{\frac{2}{3}}$)(a${\;}^{\frac{1}{2}}$•b${\;}^{\frac{1}{2}}$)÷(-2a${\;}^{\frac{5}{6}}$•b${\;}^{\frac{1}{6}}$)=$\frac{3}{2}b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖的程序框圖表示算法的運行結(jié)果是( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知p:0<m<1,q:橢圓$\frac{{x}^{2}}{m}$+y2=1的焦點在y軸上,則p是q的充要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A,B兩地相距100km.按交通法規(guī)規(guī)定:A,B兩地之間的公路上車速要求不低于60km/h且不高于100km/h.假設(shè)汽車以xkm/h速度行駛時,每小時耗油量為($4+\frac{1}{128000}{x^3}-\frac{1}{80}x$)升,汽油的價格是6元/升,司機每小時的工資是24元.
(1)若汽車從A地以64km/h的速度勻速行駛到B地,需耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時,從A地到B地的總費用最低?

查看答案和解析>>

同步練習(xí)冊答案