13.某電腦公司有6名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如表:
推銷員編號12345
工作年限x/年35679
推銷金額y/萬元23345
(1)求年推銷金額y與工作年限x之間的相關(guān)系數(shù)(精確到0.01);
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程.
(參考數(shù)據(jù):$\sqrt{1.04}$≈1.02.)
參考公式:線性相關(guān)系數(shù)公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
線性回歸方程系數(shù)公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.

分析 (1)由$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=10,$\sum_{i=1}^{n}$$({x}_{i}-\overline{x})^{2}$=20,$\sum_{i=1}^{n}$$({y}_{i}-\overline{y})^{2}$=5.2,利用r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,求年推銷金額y與工作年限x之間的相關(guān)系數(shù);
(2)求出回歸方程的系數(shù),即可求年推銷金額y關(guān)于工作年限x的線性回歸方程.

解答 解:(1)由$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=10,$\sum_{i=1}^{n}$$({x}_{i}-\overline{x})^{2}$=20,$\sum_{i=1}^{n}$$({y}_{i}-\overline{y})^{2}$=5.2,
可得r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$=$\frac{10}{\sqrt{104}}$≈0.98.
即年推銷金額y與工作年限x之間的相關(guān)系數(shù)約為0.98.
(2)設(shè)所求的線性回歸方程為y=bx+a,
則b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{10}{20}$=0.5,a=$\overline{y}$-b$\overline{x}$=0.4.
∴年推銷金額y關(guān)于工作年限x的線性回歸方程為y=0.5x+0.4.

點評 本題考查回歸分析的初步應(yīng)用,考查利用最小二乘法求線性回歸方程,是一個綜合題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.以下列結(jié)論:
①△ABC中,若A>B,則sinA>sinB;  
②若$\overrightarrow a$•$\overrightarrow b$<0,則$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角; 
③將函數(shù)y=3sin2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到f(x)=3sin(2x-$\frac{π}{3}$)的圖象; 
④函數(shù)f(x)=2sin(x+$\frac{π}{6}$)sin($\frac{π}{3}$-x)在x∈[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域為[-$\frac{1}{2}$,1]; 
⑤若0<tanAtanB<1,則△ABC為鈍角三角形.
則上述結(jié)論正確的是①④⑤.(填相應(yīng)結(jié)論對應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.能夠把圓O:x2+y2=16的周長和面積同時分為相等的兩部分的函數(shù)稱為圓O的“和諧函數(shù)”,下列函數(shù)中不是圓O的和諧函數(shù)是( 。
A.cosxB.$tan\frac{x}{2}$C.sin3xD.$ln\frac{5-x}{5+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓C:x2+y2-2x-6y+9=0,過x軸上的點P(1,0)向圓C引切線,則切線長為(  )
A.3B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果PA、PB、PC兩兩垂直,那么點P在平面ABC內(nèi)的投影一定是△ABC( 。
A.重心B.內(nèi)心C.外心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,則此數(shù)列的前13項之和等于26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.cos70°cos335°+sin110°sin25°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,若輸入的n的值為3,則輸出的S的值為(  )
A.2B.7C.17D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=$\left\{\begin{array}{l}{{e}^{\frac{1}{x},x<0}}\\{x+a,x≥0}\end{array}\right.$,問常數(shù)a為何值時,$\underset{lim}{x→0}$f(x)存在.

查看答案和解析>>

同步練習(xí)冊答案