分析 設(shè)AB=AC=a、AD=BD=b,在△ABC中由余弦定理求出cos∠ABC、sin∠ABC,在△ABD中由余弦定理表示出AD,由正弦定理求出sin∠ADB的值.
解答 解:如圖設(shè)AB=AC=a,AD=BD=b,由$\sqrt{3}$BC=2AB得,BC=$\frac{2\sqrt{3}}{3}a$.
在△ABC中,由余弦定理得,cos∠ABC=$\frac{{AB}^{2}{+BC}^{2}{-AC}^{2}}{2AB•BC}$=$\frac{{a}^{2}{+(\frac{2\sqrt{3}}{3}a)}^{2}{-a}^{2}}{2a•\frac{2\sqrt{3}}{3}a}$=$\frac{\sqrt{3}}{3}$,
∵AB=AC,∴∠ABC是銳角,則sin∠ABC=$\sqrt{{1-cos}^{2}∠ABC}$=$\frac{\sqrt{6}}{3}$.
在△ABD中,由余弦定理得AD2=AB2+BD2-2•AB•BD•cos∠ABD,
∴b2=a2+b2-2ab•$\frac{\sqrt{3}}{3}$,解得 a=$\frac{2\sqrt{3}}{3}$b,
由正弦定理得,$\frac{AD}{sin∠ABD}$=$\frac{AB}{sin∠ADB}$,∴$\frac{\frac{\sqrt{6}}{3}}$=$\frac{a}{sin∠ADB}$,
解得sin∠ADB=$\frac{2\sqrt{2}}{3}$,
故答案為:$\frac{{2\sqrt{2}}}{3}$.
點(diǎn)評(píng) 本題考查正弦定理和余弦定理的綜合應(yīng)用,以及方程思想,考查化簡(jiǎn)、計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$i | C. | $\frac{\sqrt{5}}{5}$ | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,15,25,35,45 | B. | 25,45,65,85,100 | C. | 10,30,50,70,90 | D. | 23,33,45,53,63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{{\sqrt{2}}}{3}$,$\frac{{\sqrt{3}}}{3}$] | B. | [$\frac{1}{3}$,$\frac{1}{2}$] | C. | [$\frac{{\sqrt{3}}}{4}$,$\frac{{\sqrt{3}}}{3}$] | D. | [$\frac{1}{4}$,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com