分析 (Ⅰ)由兩向量的坐標(biāo),及已知等式,利用平面向量的數(shù)量積運(yùn)算法則求出cosA的值,即可確定出A的大;
(Ⅱ)根據(jù)已知等式求出a的值,利用余弦定理列出關(guān)系式,把a(bǔ),b+c,cosA的值代入求出bc的值,利用三角形面積公式求出三角形ABC面積,并判斷其形狀即可.
解答 解:(Ⅰ)∵$\overrightarrow{m}$=(1,2),$\overrightarrow{n}$=(cos2A,cos2$\frac{A}{2}$),且$\overrightarrow{m}$•$\overrightarrow{n}$=1,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=cos2A+2cos2$\frac{A}{2}$=2cos2A-1+1+cosA=2cos2A+cosA=1,
∴cosA=$\frac{1}{2}$或cosA=-1,
∵A∈(0,π),
∴A=$\frac{π}{3}$;
(Ⅱ)由題意知a=$\sqrt{3}$,
∵a2=b2+c2-2bccosA=(b+c)2-2bc(1+cosA),
∴3=12-2bc(1+cos$\frac{π}{3}$),
∴bc=3,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$,
由$\left\{\begin{array}{l}b+c=2\sqrt{3}\\ bc=3\end{array}\right.$,得b=c=$\sqrt{3}$,
∵a=$\sqrt{3}$,
∴△ABC為等邊三角形.
點(diǎn)評(píng) 此題考查了余弦定理,三角形面積公式,平面向量的數(shù)量積運(yùn)算,熟練掌握余弦定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x3 | B. | f(x)=-x-1 | C. | f(x)=log2x | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0≤0,使得(x0+1)lnx0≤1 | B. | ?x0>0,使得(x0+1)lnx0≤1 | ||
C. | ?x0>0,總有(x0+1)lnx0≤1 | D. | ?x0≤0,總有(x0+1)lnx0≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com