5.已知tanα=2,則$\frac{si{n}^{2}α+co{s}^{2}(π-α)}{1+co{s}^{2}α}$的值為$\frac{5}{6}$.

分析 利用同角三角函數(shù)基本關(guān)系式、“弦化切”即可得出.

解答 解:∵tanα=2,
∴$\frac{si{n}^{2}α+co{s}^{2}(π-α)}{1+co{s}^{2}α}$=$\frac{si{n}^{2}α+co{s}^{2}α}{si{n}^{2}α+2co{s}^{2}α}$=$\frac{ta{n}^{2}α+1}{ta{n}^{2}α+2}$=$\frac{{2}^{2}+1}{{2}^{2}+2}$=$\frac{5}{6}$,
故答案為:$\frac{5}{6}$.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)基本關(guān)系式、“弦化切”、誘導(dǎo)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知p=lg7-lg3,則10p=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知U=R,集合A={x|4≤x≤6},B={x|3<2x-1<19},求:
(1)A∪B
(2)(CUA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若P點(diǎn)是以A(-3,0)、B(3,0)為焦點(diǎn),實(shí)軸長(zhǎng)為2$\sqrt{5}$的雙曲線與圓x2+y2=9的一個(gè)交點(diǎn),則|PA|+|PB|=( 。
A.4$\sqrt{13}$B.2$\sqrt{14}$C.2$\sqrt{13}$D.3$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知0<a<1,在函數(shù)y=logax(x≥1)的圖象上有A,B,C三點(diǎn),它們的橫坐標(biāo)分別是t,t+2,t+4
(Ⅰ)若△ABC面積為S,求S=f(t);
(Ⅱ)判斷S=f(x)的單調(diào)性,求S=f(t)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),則不等式f(2)<f(log2x)的解集為(0,$\frac{1}{4}$)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在等差數(shù)列{an}中,若a4+a9+a14=36,則a${\;}_{10}-\frac{1}{2}{a}_{11}$=(  )
A.3B.6C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.不等式 ${log_{\frac{1}{2}}}(2-x)>2$的解集為$({\frac{7}{4},2})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案