16.已知U=R,集合A={x|4≤x≤6},B={x|3<2x-1<19},求:
(1)A∪B
(2)(CUA)∩B.

分析 由已知直接利用交、并、補集的混合運算得答案.

解答 解:U=R,A={x|4≤x≤6},B={x|3<2x-1<19}={x|2<x<10}.
(1)A∪B={x|4≤x≤6}∪{x|2<x<10}={x|2<x<10};
(2)∵CUA={x|x<4或x>6},
∴(CUA)∩B={x|2<x<4}或6<x<10}.

點評 本題考查交、并、補集的混合運算,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.tan1.5,tan2.5,tan3.5的大小關(guān)系為tan3.5<tan2.5<tan1.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.判斷下列函數(shù)的奇偶性.
(1)f(x)=sin($\frac{3x}{4}+\frac{3π}{2}$);
(2)f(x)=$\frac{1+sinx-co{s}^{2}x}{1+sinx}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)y=2sin2x+2acosx+2a的最大值是$\frac{1}{2}$.
(1)求a的值;
(2)求y的最小值,并求y最小時x的值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)為偶函數(shù)的是( 。
A.f(x)=xB.f(x)=x2C.f(x)=$\frac{1}{x}$D.f(x)=x2-2x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)y=cos2x與函數(shù)y=sin(2x+φ)在[0,$\frac{π}{4}$]上的單調(diào)性相同,則φ的一個值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,4)且$\overrightarrow{a}$•$\overrightarrow$=10,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知tanα=2,則$\frac{si{n}^{2}α+co{s}^{2}(π-α)}{1+co{s}^{2}α}$的值為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={x|x2+5x-6≤0},N={x|x2-16<0},則M∩N=( 。
A.(-4,1]B.[1,4]C.[-6,-4)D.[-6,4)

查看答案和解析>>

同步練習冊答案