【題目】已知函數(shù)只有一個零點,且這個零點為正數(shù),則實數(shù)的取值范圍是____.
【答案】
【解析】
先運用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和單調(diào)區(qū)間,再結(jié)合函數(shù)圖象求出a的取值范圍.
解:令=3x2﹣3a2=3(x﹣a)(x+a)=0,解得x1=﹣a,x2=a,
其中a>0,所以函數(shù)的單調(diào)性和單調(diào)區(qū)間如下:
x∈(﹣∞,﹣a),f(x)遞增;x∈(﹣a,a),f(x)遞減;x∈(a,+∞),f(x)遞增.
因此,f(x)在x=﹣a處取得極大值,在x=a處取得極小值,
結(jié)合函數(shù)圖象,要使f(x)只有一個零點x0,且x0>0,只需滿足:
f(x)極大值=f(﹣a)<0,即﹣a3+3a3﹣6a2+4a<0,
整理得a(a﹣1)(a﹣2)<0,解得,a∈(1,2),
故答案為:(1,2)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.若C,D和點 共線,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進入21世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬件之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三種函數(shù)模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;
(2)因遭受某國對該產(chǎn)品進行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別為雙曲線: 的左、右焦點,過的直線與雙曲線的左右兩支分別交于, 兩點,若,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班共名同學(xué),在一次數(shù)學(xué)考試中全班同學(xué)成績?nèi)拷橛?/span>分到分之間.將成績結(jié)果按如下方式分成五組:第一組,第二組, ,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,將成績大于或等于分且小于分記為“良好”, 分以上記為“優(yōu)秀”,不超過分則記為“及格”.
(1)求該班學(xué)生在這次數(shù)學(xué)考試中成績“良好”的人數(shù);
(2)若從第一、五組中共隨機取出兩個成績,記為取得第一組成績的個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(Ⅰ)請?zhí)顚懴卤恚▽懗鲇嬎氵^程):
(Ⅱ)從下列三個不同的角度對這次測試結(jié)果進行分析;
①從平均數(shù)和方差相結(jié)合看(分析誰的成績更穩(wěn)定);
②從平均數(shù)和命中9環(huán)及9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);
③從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: ,定義橢圓C的“相關(guān)圓”方程為,若拋物線的焦點與橢圓C的一個焦點重合,且橢圓C短軸的一個端點和其兩個焦點構(gòu)成直角三角形。
(I)求橢圓C的方程和“相關(guān)圓”E的方程;
(II)過“相關(guān)圓”E上任意一點P作“相關(guān)圓”E的切線l與橢圓C交于A,B兩點,O為坐標(biāo)原點。
(i)證明∠AOB為定值;
(ii)連接PO并延長交“相關(guān)圓”E于點Q,求△ABQ面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動點.
(1)證明: 平面;
(2)若四邊形為正方形,且, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南濮陽市高三一模】已知函數(shù), .
(I)求函數(shù)的圖象在點處的切線方程;
(II)若存在,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com