7.已知拋物線x2=4py(p>0)的焦點為F,直線y=x+2與該拋物線交于A,B兩點,M是線段AB的中點,過M作x軸的垂線,垂足為N,若$\overrightarrow{AF}$•$\overrightarrow{BF}$+(${\overrightarrow{AF}$+$\overrightarrow{BF}}$)•$\overrightarrow{FN}$=-1-5p2,則p的值為$\frac{1}{2}$.

分析 設(shè)A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.利用韋達(dá)定理,結(jié)合向量的數(shù)量積公式,即可得出結(jié)論.

解答 解:設(shè)A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.
由韋達(dá)定理得x1+x2=4p,x1x2=-8p,所以M(2p,2p+2),所以N點(2p,0).
同理y1+y2=4p+4,y1y2=4,
∵$\overrightarrow{AF}$•$\overrightarrow{BF}$+(${\overrightarrow{AF}$+$\overrightarrow{BF}}$)•$\overrightarrow{FN}$=-1-5p2,
∴(-x1,p-y1)•(-x2,p-y2)+(-x1-x2,2p-y1-y2)•(2p,-p)=-1-5p2,
代入整理可得4p2+4p-3=0,
∴p=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某校數(shù)學(xué)課外小組在坐標(biāo)紙上為學(xué)校的一塊空地設(shè)計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)k≥2時,$\left\{\begin{array}{l}{{x}_{k}={x}_{k-1}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]}\\{{y}_{k}={y}_{k-1}+T(\frac{k-1}{5})-T(\frac{k-2}{5})}\end{array}\right.$.其中T(a)表示非負(fù)實數(shù)a的整數(shù)部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵樹種植點的坐標(biāo)應(yīng)為(1,2);第2015棵樹種植點的坐標(biāo)應(yīng)為(5,403).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x0>0,2x0≥3,則¬p是(  )
A.$?x≤0{,_{\;}}{2^x}≥3$B.$?x≤0{,_{\;}}{2^x}<3$C.$?x>0{,_{\;}}{2^x}≤3$D.$?x>0{,_{\;}}{2^x}<3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,位于A處的海面觀測站獲悉,在其正東方向相距40海里的B處有一艘漁船遇險,并在原地等待營救.在A處南偏西30°且相距20海里的C處有一艘救援船,該船接到觀測站通告后立即前往B處求助,則sin∠ACB=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項和為Sn,若an=$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n∈N*),則S2009的值為$\sqrt{2009}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果長方體三面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,那么它的外接球的半徑是( 。
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,動物園要圍成四間相同面積的長方形虎籠,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成,設(shè)每間虎籠的長為xm,寬為ym,現(xiàn)有36m長的鋼筋網(wǎng)材料,為使每間虎籠面積最大,則$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對任意的向量$\overrightarrow a$,$\overrightarrow b$和實數(shù)x∈[0,1],如果滿足$|{\overrightarrow a}|=2|{\overrightarrow a-\overrightarrow b}|$,都有$|{\overrightarrow a-x\overrightarrow b}|≤λ|{\overrightarrow a-\overrightarrow b}|$成立,那么實數(shù)λ的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)X~B(n,p),且E(X)=12,D(X)=4,則n與p的值分別為( 。
A.18,$\frac{1}{3}$B.12,$\frac{2}{3}$C.18,$\frac{2}{3}$D.12,$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案