14.若方程$\left\{\begin{array}{l}{x=1-3t}\\{y=4t}\end{array}\right.$(t為參數(shù))與$\left\{\begin{array}{l}{x=1+λcosθ}\\{y=λsinθ}\end{array}\right.$(λ為參數(shù))表示同一條直線,則λ與t的關(guān)系是( 。
A.λ=5tB.λ=-5tC.t=5λD.t=-5λ

分析 根據(jù)參數(shù)方程計(jì)算直線的傾斜角,得出cosθ,sinθ的值,用同一個(gè)參數(shù)來(lái)表示直線方程得出t和λ的關(guān)系.

解答 解:由$\left\{\begin{array}{l}{x=1-3t}\\{y=4t}\end{array}\right.$(t為參數(shù))得直線的斜率k=-$\frac{4}{3}$.
由$\left\{\begin{array}{l}{x=1+λcosθ}\\{y=λsinθ}\end{array}\right.$(λ為參數(shù))可知直線的傾斜角為θ,
∴cosθ=-$\frac{3}{5}$,sinθ=$\frac{4}{5}$.
∵設(shè)λ=mt,則直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+mtcosθ=1-\frac{3}{5}mt}\\{y=mtsinθ=\frac{4}{5}mt}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\frac{3}{5}m=3}\\{\frac{4}{5}m=4}\end{array}\right.$,解得m=5.
∴λ=5t.
故選A.

點(diǎn)評(píng) 本題考查了直線的不同參數(shù)方程之間的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為e=2,過(guò)原點(diǎn)的直線l與雙曲線相交于A,B兩點(diǎn),M為雙曲線上不同于A,B的點(diǎn),且直線MA,MB的斜率分別為k1,k2,則k1•k2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的離心率$e=\frac{{\sqrt{5}}}{2}$,點(diǎn)P是拋物線y2=4x上的一動(dòng)點(diǎn),P到雙曲線C的上焦點(diǎn)F1(0,x)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為( 。
A.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$-x2=1C.y2-$\frac{{x}^{2}}{4}$=1D.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,邊長(zhǎng)為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(1)求證;平面ABCD⊥平面ADE;
(2)求幾何體A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在等腰△ABC中,BD和CE是兩腰上的中線,且以BD⊥CE,求cosA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)中,若過(guò)雙曲線左頂點(diǎn)A斜率為1的直線交右支于點(diǎn)B,點(diǎn)B在x軸上的射影恰好為雙曲線的右焦點(diǎn)F,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$f(x)=2{cos^2}x+\sqrt{3}sin2x+a,(a∈R)$
(1)若x∈R,求f(x)的單調(diào)增區(qū)間;
(2)若$x∈[0,\frac{π}{2}]$時(shí),f(x)的最大值為3,求a的值;
(3)在(2)的條件下,若方程f(x)=m在$[0,\frac{3π}{4}]$上恰有兩個(gè)不等實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|-1≤x<3},B={x|x2-3x+2<0},則A∩(∁RB)可表示為(  )
A.[-1,1)∪(2,3)B.[-1,1]∪[2,3)C.(1,2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow a=(\sqrt{3},1)$,$\overrightarrow b=(0,-1)$,$\overrightarrow c=(k,\sqrt{3})$,若($\overrightarrow a-2\overrightarrow b$)與$\overrightarrow c$互相垂直,則k的值為(  )
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案