分析 由題意知斜率存在,設(shè)其為k,則直線方程為y=kx+1,利用兩條直線的夾角公式求出k的值,可得要求的直線的方程.
解答 解:由題意知斜率存在,設(shè)其為k,則直線方程為y=kx+1.
則由tan$\frac{π}{4}$=1=$\frac{|k-\frac{2}{3}|}{|1+\frac{2}{3}k|}$ 解得k=5或k=-$\frac{1}{5}$,
∴直線方程為y=5x+1或y=-$\frac{1}{5}$x+1,即5x-y+1=0或x+5y-5=0.
故答案為:5x-y+1=0或x+5y-5=0.
點(diǎn)評 本題主要考查兩條直線的夾角公式的應(yīng)用,用斜截式求直線的方程,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|k$π-\frac{π}{2}<x<kπ+\frac{π}{2},k∈Z$} | B. | {x|2$kπ-\frac{π}{2}$<x<2kπ+$\frac{π}{2}$,k∈Z} | ||
C. | {x|2kπ-π<x<2kπ+π,k∈Z} | D. | {x|$\frac{kπ}{2}$-$\frac{π}{4}$<x<$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\sqrt{3}$或-$\sqrt{3}$ | D. | ±3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (-1,1) | C. | (-2,-1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8種 | B. | 12種 | C. | 16種 | D. | 24種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com