sin
3
•cos
25π
6
•tan
4
的值是
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:原式中的角度變形后,利用誘導(dǎo)公式及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.
解答: 解:原式=sin(π+
π
3
)•cos(4π+
π
6
)•tan(π+
π
4
)=-
3
2
×
3
2
×1=-
3
4

故答案為:-
3
4
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4
2
x的焦點(diǎn)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn),且橢圓的長(zhǎng)軸長(zhǎng)為4,左右頂點(diǎn)分別為A,B,經(jīng)過橢圓左焦點(diǎn)的直線l與橢圓交于C、D兩點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2,且|S1-S2|=2,求直線l方程;
(Ⅲ)若M(x1,y1)N(x2,y2)是橢圓上的兩動(dòng)點(diǎn),且滿x1x2+2y1y2=0,動(dòng)點(diǎn)P滿足
OP
=
OM
+2
ON
(其中O為坐標(biāo)原點(diǎn)),是否存在兩定點(diǎn)F1,F(xiàn)2使得|PF1|+|PF2|為定值,若存在求出該定值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)范圍內(nèi)分解因式:xy-1+x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的流程圖中,若輸出的函數(shù)f(x)的函數(shù)值在區(qū)間[-1,2]內(nèi),則輸入的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間有兩兩垂直的三條直線,過空間一點(diǎn)M到三條直線的距離分別為3,4,5,則點(diǎn)M到三條直線交點(diǎn)的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=10+loga(x+
x2+1
)且f(1)=2,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)輸入整數(shù)x∈[1,12],執(zhí)行如圖所示的程序框圖,則輸出的x不小于39的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算tan16°+tan44°+
3
tan16°tan44°的結(jié)果等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域?yàn)镈的函數(shù)y=f(x)和常數(shù)c,若對(duì)任意正實(shí)數(shù)ξ,?x∈D,使得0<|f(x)-c|<ξ恒成立,則稱函數(shù)y=f(x)為“斂c函數(shù)”,現(xiàn)給出如下函數(shù):
①f(x)=x(x∈Z);
②f(x)=(
1
2
x+2(x∈Z);
③f(x)=log2x+1;
④f(x)=
2x-1
2x

其中為“斂2函數(shù)”的有( 。
A、①②B、③④
C、①②③D、②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案