6.求證:$\frac{(2n)!}{{2}^{n}•n!}$=1•3•5•…•(2n-1)

分析 根據(jù)階乘的定義,進(jìn)行化簡(jiǎn)運(yùn)算即可.

解答 證明:$\frac{(2n)!}{{2}^{n}•n!}$=$\frac{1×2×3×4×…×(2n-1)×(2n)}{{2}^{n}×1×2×3×…×n}$
=$\frac{{2}^{n}×(1×2×3×…×n)×[1×3×5×…×(2n-1)]}{{2}^{n}×1×2×3×…×n}$
=1•3•5•…•(2n-1).

點(diǎn)評(píng) 本題考查了階乘運(yùn)算的應(yīng)用問(wèn)題,解題時(shí)應(yīng)對(duì)階乘運(yùn)算進(jìn)行化簡(jiǎn),約分,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知復(fù)數(shù)z1=2+3i,z2=a-2+i,若|z1-z2|<|z1|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={x|$\frac{1+x}{1-x}$>0},則∁RM=( 。
A.{x|-1≤x<1}B.{x|-1≤x≤1}C.{x|x≤-1或x>1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知由不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-kx≤2}\\{y-x-4≤0}\end{array}\right.$所確定的平面區(qū)域Ω的面積為7,點(diǎn)M(x,y)∈Ω,則z=x-2y的最小值是( 。
A.-8B.-7C.-6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.△ABC中,已知AB=4,BC=5,AC=6,若點(diǎn)O是△ABC的外心,則$\overrightarrow{AO}$•$\overrightarrow{AC}$的值是18;若點(diǎn)G是△ABC的重心,則$\overrightarrow{AG}$•$\overrightarrow{AC}$的值是$\frac{33}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(1)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,求ω的取值范圍.
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f′(x)=$\frac{1}{3}$x3+x2+ax.
(1)若f(x)在區(qū)間[1,+∞)單調(diào)遞增,求a的最小值;
(2)若g(x)=$\frac{x}{{e}^{x}}$,對(duì)?x1∈[$\frac{1}{2}$,2],?x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若直線l:x+my+c=0與拋物線y2=2x交于A、B兩點(diǎn),O點(diǎn)是坐標(biāo)原點(diǎn).
(1)當(dāng)m=-1,c=-2時(shí),求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案