【題目】2018年8月8日是我國第十個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計(jì)該小區(qū)年齡不超過80歲的成年人人數(shù)。
【答案】(1) 平均數(shù)37,中位數(shù)為35;(2) (。;(ⅱ)該小區(qū)年齡不超過80歲的成年人人數(shù)約為2000×0.88=1760.
【解析】
(1)每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和可得平均值;直方圖左右兩邊面積相等處橫坐標(biāo)表示中位數(shù);(2)(ⅰ)從6人中任選2人共有15個(gè)基本事件,至少有1人年齡不低于60歲的共有9個(gè)基本事件,由古典概型概率公式可得結(jié)果;(ⅱ)樣本中年齡在18歲以上的居民所占頻率為1-(18-10)×0.015=0.88.
(1)平均數(shù).
前三組的頻率之和為0.15+0.2+0.3=0.65,故中位數(shù)落在第3組,設(shè)中位數(shù)為x,
則(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位數(shù)為35.
(2)(。颖局,年齡在[50,70)的人共有40×0.15=6人,其中年齡在[50,60)的有4人,設(shè)為a,b,c,d,年齡在[60,70)的有2人,設(shè)為x,y.
則從中任選2人共有如下15個(gè)基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).
至少有1人年齡不低于60歲的共有如下9個(gè)基本事件:
(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).
記“這2人中至少有1人年齡不低于60歲”為事件A,
故所求概率.
(ⅱ)樣本中年齡在18歲以上的居民所占頻率為1-(18-10)×0.015=0.88,
故可以估計(jì),該小區(qū)年齡不超過80歲的成年人人數(shù)約為2000×0.88=1760.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓柱的直徑,是圓柱的母線,,,點(diǎn)是圓柱底面圓周上的點(diǎn).
(1)求三棱錐體積的最大值;
(2)若,是線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),且當(dāng)時(shí),.若關(guān)于x的不等式只有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)、,動(dòng)點(diǎn)在軸上的射影是,且.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)直線、的兩個(gè)斜率存在,分別記為、,若,求點(diǎn)的坐標(biāo);
(3)若經(jīng)過點(diǎn)的直線與動(dòng)點(diǎn)的軌跡有兩個(gè)交點(diǎn)、,當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說明理由;
(2)若直線和曲線相交于,兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),則下列敘述正確的有( )
A.B.函數(shù)在定義域上是單調(diào)增函數(shù)
C.D.函數(shù)所有零點(diǎn)之和大于零
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
(1)當(dāng),時(shí),求函數(shù)的零點(diǎn);
(2)當(dāng)時(shí),解關(guān)于x的不等式;
(3)如果函數(shù)的圖象恒在直線的上方,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com