已知平面向量,,,,.
(1)當(dāng)時(shí),求的取值范圍;
(2)若的最大值是,求實(shí)數(shù)的值;
(3)(僅理科同學(xué)做,文科同學(xué)不做)若的最大值是,對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.
(1)[-9,7](2) (3)
解析試題分析:解:(1)由題意知,,
,
令,則,則 ks5u
當(dāng)時(shí),在上遞增,則
(2)①當(dāng)時(shí),
在上單調(diào)遞減,;
,所以滿足條件
②當(dāng)時(shí),
在上先增后減,;
,則不滿足條件
③當(dāng)時(shí),
在上單調(diào)遞增,;
,所以滿足條件
綜上,
(3)由(2)知
①當(dāng)時(shí),得,即;
②當(dāng)時(shí),得,即;
③當(dāng)時(shí),
。┊(dāng)時(shí),,所以
ⅱ)當(dāng)時(shí),
ⅲ)當(dāng)時(shí),,所以
綜上,實(shí)數(shù)的取值范圍是.
考點(diǎn):三角函數(shù)的性質(zhì)
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)三角函數(shù)的性質(zhì)以及不等式的恒成立啊里的餓到參數(shù)的范圍,體現(xiàn)了分類討論思想,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,且.
(1)將表示為的函數(shù),并求的單調(diào)增區(qū)間;
(2)已知分別為的三個(gè)內(nèi)角對(duì)應(yīng)的邊長,若,求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a與b的夾角θ;
(2)求|a+b|和|a-b|;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為兩個(gè)不共線向量.
(1)試確定實(shí)數(shù)k,使共線;
(2),求使三個(gè)向量的終點(diǎn)在同一條直線上的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知, ,當(dāng)為何值時(shí),
(1)與垂直?
(2)與平行?平行時(shí)它們是同向還是反向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/e0/7eee00acaf5c8f2c3ecffebf9e323c25.png" style="vertical-align:middle;" />的函數(shù)圖象的兩個(gè)端點(diǎn)為,是圖象上任意一點(diǎn),其中,向量,若不等式恒成立,則稱函數(shù)在上“階線性近似”.若函數(shù)在上“階線性近似”,則實(shí)數(shù)的取值范圍為( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com