【題目】如果對定義在R上的函數f(x)對任意兩個不相等的實數x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則稱函數f(x)為“H函數”.給出下列函數①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函數”的個數為( )
A.1
B.2
C.3
D.4
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。
(1)求實數a,b的值;
(2)若不等式f(2k)>1成立,求實數k的取值范圍;
(3)定義在[p,q]上的函數(x),設p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數M>0,使得和式恒成立,則稱函數(x)為在[p,q]上的有界變差函數。試判斷函數f(x)是否為在[0,4]上的有界變差函數?若是,求M的最小值;若不是,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元.某月甲、乙兩戶共交水費y元,已知甲、乙兩用戶該月用水量分別為5x,3x噸. (Ⅰ) 若x=1,求該月甲、乙兩戶的水費;
(Ⅱ) 求y關于x的函數;
(Ⅲ) 若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABCA1B1C1中,AB=2,AA1=3,
D為C1B的中點,P為AB邊上的動點.
(1)當點P為AB的中點時,證明DP∥平面ACC1A1;
(2)若AP=3PB,求三棱錐BCDP的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數據,如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y關于x的回歸方程 ;
(2)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額. (附:回歸方程 中, = = , = ﹣ .)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,AF=AD=a,G是EF的中點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在二項式( + )n展開式中,前三項的系數成等差數列. 求:(1)展開式中各項系數和;
【答案】解:由題意得2 × =1+ × ,
化為:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展開式中各項系數和= = .
(1)展開式中系數最大的項.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com