1.函數(shù)y=x2+4x+1在區(qū)間(-6,a)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-6,-2].

分析 求出二次函數(shù)的對(duì)稱軸方程,由二次函數(shù)的減區(qū)間,可得a在對(duì)稱軸的左側(cè),解不等式即可得到所求范圍.

解答 解:函數(shù)y=x2+4x+1的對(duì)稱軸為x=-2,
在區(qū)間(-6,a)上單調(diào)遞減,
由題意可得-6<a≤-2,
故答案為:(-6,-2].

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì):?jiǎn)握{(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.正方體中,EC與BD所成角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+a,(x<1)}\\{-x-2a,(x≥1)}\end{array}\right.$滿足f(1-a)=f(1+a),其中a不為零,則實(shí)數(shù)a的值為( 。
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.$\frac{3}{2}$或-$\frac{3}{4}$D.-$\frac{3}{2}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中滿足條件“1≤x1+x2+x3+x4+x5≤3”的元素個(gè)數(shù)為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.雙曲線和橢圓25x2+9y2=225有公共焦點(diǎn),它們的離心率之和為2,則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知Rt△ABC中,周長(zhǎng)為定值L,求該三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等式x2+ax+1≥0對(duì)于一切x∈(2,3)成立,則a的取值范圍是(  )
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上結(jié)論均不正確   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A={-2,-1,0,1,2},B={x|x2=1},則A∩B=( 。
A.{-1,0,1 }B.{-1,0}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)點(diǎn)A(-3,-2)作直線與拋物線x2=8y在第二象限相切于點(diǎn)B,記拋物線的焦點(diǎn)為F,則直線BF的斜率為( 。
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案