17.過(guò)點(diǎn)A(-3,-2)作直線與拋物線x2=8y在第二象限相切于點(diǎn)B,記拋物線的焦點(diǎn)為F,則直線BF的斜率為( 。
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

分析 設(shè)B(m,$\frac{{m}^{2}}{8}$)(m<0),求得函數(shù)的導(dǎo)數(shù),可得切線的斜率,再由兩點(diǎn)的斜率公式,解方程可得m,即有B的坐標(biāo),運(yùn)用兩點(diǎn)的斜率公式計(jì)算即可得到所求值.

解答 解:設(shè)B(m,$\frac{{m}^{2}}{8}$)(m<0),
由y=$\frac{{x}^{2}}{8}$的導(dǎo)數(shù)為y′=$\frac{x}{4}$,
可得切線的斜率為$\frac{m}{4}$,
即有$\frac{m}{4}$=$\frac{\frac{{m}^{2}}{8}+2}{m+3}$,化為m2+6m-16=0,
解得m=-8(2舍去),
可得B(-8,8),又F(0,2),
則直線BF的斜率是$\frac{8-2}{-8}$=-$\frac{3}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系,主要是相切的條件,注意運(yùn)用導(dǎo)數(shù)的幾何意義,考查直線的斜率公式的運(yùn)用,化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=x2+4x+1在區(qū)間(-6,a)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-6,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-2,+∞)上是減函數(shù),則b的取值范圍為(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1}{1-z}$=i,則復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,給出下列命題:
①-3是函數(shù)y=f(x)的極值點(diǎn);
②-1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在區(qū)間(-3,1)上單調(diào)遞增;
④y=f(x)在x=0處切線的斜率小于零.
以上正確命題的序號(hào)是( 。
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若直線y=-x+1與曲線f(x)=-$\frac{1}{a}$ex+b相切于點(diǎn)A(0,1),則實(shí)數(shù)a=1,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過(guò)6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如表:
微信控非微信控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營(yíng)養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,求這2人中至少有1人為“非微信控”的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.(1)人的年齡與他(她)擁有的財(cái)富之間的關(guān)系;
(2)曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間的關(guān)系;
(3)蘋果的產(chǎn)量與氣候之間的關(guān)系;
(4)森林中的同一種樹木,其斷面直徑與高度之間的關(guān)系;
(5)學(xué)生與他(她)的學(xué)號(hào)之間的關(guān)系,
其中有相關(guān)關(guān)系的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,a=3,且(3+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為( 。
A.$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{5}{4}$$\sqrt{3}$D.$\frac{9}{4}$$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案