10.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),x∈(0,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求x的值.

分析 (1)由向量平行得,∴-$\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx=0,解出tanx,結(jié)合x的范圍求出x;
(2)利用定義式和坐標(biāo)運算求出數(shù)量積,列方程解出x.

解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow$,∴-$\frac{\sqrt{2}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx=0,即sinx+cosx=0,∴tanx=-1.
∴x∈(0,π),∴x=$\frac{3π}{4}$.
(2)$|\overrightarrow{a}|$=$\sqrt{si{n}^{2}x+co{s}^{2}x}$=1,$|\overrightarrow|$=$\sqrt{\frac{1}{2}+\frac{1}{2}}$=1.$\overrightarrow{a}•\overrightarrow$=1×$1×cos\frac{π}{3}$=$\frac{1}{2}$.
又∵$\overrightarrow{a}•\overrightarrow$=$\frac{\sqrt{2}}{2}sinx$-$\frac{\sqrt{2}}{2}cosx$,∴$\frac{\sqrt{2}}{2}sinx$-$\frac{\sqrt{2}}{2}cosx$=sin(x-$\frac{π}{4}$)=$\frac{1}{2}$.
∵x∈(0,π),∴x-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$).∴x-$\frac{π}{4}$=$\frac{π}{6}$.
∴x=$\frac{5π}{12}$.

點評 本題考查了平面向量的數(shù)量積運算,三角函數(shù)的恒等變換,向量的位置關(guān)系與數(shù)量積的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的最值;
(1)f(x)=-x3+9x2-24x+10,x∈[0,3];
(2)f(x)=sin2x-x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)f(x)=$\frac{1-x+{x}^{2}}{1+x-{x}^{2}}$,x∈[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.己知定義在R上的奇函數(shù)f(x)的圖象為一條連續(xù)不斷的曲線,f(1+x)=f(1-x),f(1)=a,且0<x<1時,f(x)的導(dǎo)函數(shù)f′(x)滿足:f′(x)<f(x),則f(x)在[2015,2016]上的最大值為-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求證:分別過已知直線外一點與這條直線上的三點的三條直線共面(如圖所示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知BC=8,D在BC上,BD=DC,∠BAC=135°,B=2C,求AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)有99本不同的書(用排列數(shù)、組合數(shù)作答).
(1)分給甲、乙、丙3人,甲得96本,乙得2本,丙得1本,共有多少種不同的分法?
(2)分給甲、乙、丙3人,甲得93本,乙、丙各得3本,共有多少種不同的分法?
(3)平均分給甲、乙、丙3人,共有多少種不同的分法?
(4)分給甲、乙、丙3人,一人得96本,一人得2本,一人得1本,共有多少種不同的分法?
(5)分給甲、乙、丙3人,一人得93本,另兩人各得3本,共有多少種不同的分法?
(6)分成3份,一份96本,一份2本,一份1本,共有多少種不同的分法?
(7)平均分成3份,共有多少種不同的分法?
(8)分成3份,一份93本,另兩份各3本,共有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)求橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1所圍成圖形的面積;
(2)求橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1所圍成圖形分別繞x軸及y軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,已知a2+a9=10.則3a5+a7=( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若α,β均為銳角且α+β>$\frac{π}{2}$,則( 。
A.sinα>cosβB.sinα<cosβC.sinα>sinβD.sinα<sinβ

查看答案和解析>>

同步練習(xí)冊答案