5.在△ABC中,已知BC=8,D在BC上,BD=DC,∠BAC=135°,B=2C,求AD.

分析 由內(nèi)角和定理可知B=30°,C=15°,在△ABC中使用正弦定理求出AC,在△ACD中使用余弦定理求出AD.

解答 解:在△ABC中,∵∠BAC=135°,B=2C,∴B=30°,C=15°.
由正弦定理得$\frac{BC}{sin∠BAC}=\frac{AC}{sinB}$,∴AC=$\frac{BCsinB}{sin∠BAC}$=$\frac{8×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$.
在△ACD中,由余弦定理得AD2=AC2+CD2-2AC•CDcosC=32-16$\sqrt{3}$.
∴AD=$\sqrt{32-16\sqrt{3}}$=2$\sqrt{6}$-2$\sqrt{2}$.

點評 本題考查了正余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y為正實數(shù),且x+2y=1,則$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.編寫程序,輸入正整數(shù)n,計算它的階乘n!(n!=n×(n-1)×…×3×2×1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}+1,x≥0}\\{1,x<0}\end{array}\right.$,則不等式f(2-x2)>f(x)的解集為(-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,則函數(shù)F(x,y)=4x+y的最大值與最小值的差為( 。
A.24B.25C.26D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),x∈(0,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列各三角函數(shù)值
(1)sin$\frac{5π}{4}$;(2)cos(-$\frac{79π}{6}$);(3)tan(-675°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正項數(shù)列{an}的前n項和為Sn,且2Sn=an(an+1)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,則T2n-Tn≥$\frac{1}{2}$(選“≥,>,≤,<”作為答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足1+i=z(2-i)(i為虛數(shù)單位),$\overline{z}$表示復(fù)數(shù)z的共扼復(fù)數(shù),則|$\overline{z}$+$\frac{3}{5}$|=(  )
A.1B.$\sqrt{2}$C.3D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案