20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩焦點為F1(-4,0),F(xiàn)2(4,0),過F2作x軸的垂線交雙曲線于A,B兩點,若△ABF1內(nèi)切圓的半徑為a,則此雙曲線方程為$\frac{{x}^{2}}{24-8\sqrt{5}}-\frac{{y}^{2}}{384-128\sqrt{5}}$=1.

分析 欲求雙曲線的離心率,只須建立a,c的關(guān)系式即可,由雙曲線的定義得:|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,從而△ABF1周長為:2|AB|+4a,利用△ABF1內(nèi)切圓的半徑為a,得到△ABF1面積為:S=$\frac{1}{2}$(|AF1|+|BF1|+|AB|)×a,又S=$\frac{1}{2}$|AB|×2c,由面積相等即可建立a,c的關(guān)系,進而求出a,b,即可求得此雙曲線的方程.

解答 解:由雙曲線的定義得:
|AF1|-|AF2|=2a,|BF1|-|BF2|=2a兩式相加得:|AF1|+|BF1|-|AB|=4a,
又在雙曲線中,|AB|=2×$\frac{^{2}}{a}$,
∴△ABF1周長為:|AF1|+|BF1|+|AB|=2|AB|+4a=4×$\frac{^{2}}{a}$+4a,
∵△ABF1內(nèi)切圓的半徑為a,
∴△ABF1面積為:S=$\frac{1}{2}$(|AF1|+|BF1|+|AB|)×a
又S=$\frac{1}{2}$|AB|×2c,
∴$\frac{1}{2}$(4×$\frac{^{2}}{a}$+4a)×a=$\frac{1}{2}$|AB|×2c
即c2-a2=ac
∵c=4,
∴a2+4a-16=0,
∴a=2$\sqrt{5}$-2,
∴b=8$\sqrt{5}$-8,
∴雙曲線方程為$\frac{{x}^{2}}{24-8\sqrt{5}}-\frac{{y}^{2}}{384-128\sqrt{5}}$=1.
故答案為:$\frac{{x}^{2}}{24-8\sqrt{5}}-\frac{{y}^{2}}{384-128\sqrt{5}}$=1.

點評 本題考查雙曲線的離心率和三角形內(nèi)切圓的性質(zhì),在解題過程中要注意隱含條件的挖掘,注意應(yīng)用三角形面積的不同計算方法建立關(guān)于a,b,c的等式求a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.正方體ABCD-A1B1C1D1中,E、F分別是對角線A1B1、B1C1的中點.求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2-(a-1)x,a∈R.
(1)若f(1)=1,求f(x)在x∈(-∞,0)時的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+1)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.方程1og0.5(x+1)+x2=2的解的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有一球內(nèi)接圓錐,底面圓周和頂點均在球面上,其底面積為3π,已知球的半徑R=2,則此圓錐的體積為π或3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=1,PB=$\sqrt{6}$,PC=3,則該三棱錐外接球的表面積為( 。
A.16πB.64πC.$\frac{32π}{3}$D.$\frac{252π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.己知二次函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(1)若函數(shù)f(x)的最小值是f(-$\frac{1}{2}$)=-$\frac{1}{4}$,且f(0)=0,g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{-f(x-1),x<0}\end{array}\right.$,判斷并證明函數(shù)g(x)的奇偶性;
(2)在(1)條件下,求f(x)在區(qū)間[-1,m](m>-1)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.滿足不等式:2kπ十π<α<2kπ+$\frac{3}{2}π$(k∈Z)的角α屬于第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知sinα,sinβ是方程8x2-6kx+2k+1=0的兩根,且α.β終邊互相垂直,則k=-$\frac{10}{9}$.

查看答案和解析>>

同步練習(xí)冊答案