分析 求出函數的導數,求出極值點,判斷函數的單調性然后求解函數的最大值即可.
解答 解:f(x)=(x-1)ex-kx2
f′(x)=x(ex-2k)=0可得x1=0,x2=ln2k.∵k∈($\frac{1}{2}$,1],則2k∈(1,2].
∴l(xiāng)n2k∈(0,ln2]令x2>x1
∴在(0,ln2k)↓(ln2k,k)↑圖象
由圖象可知最大值在0處或k處取得,
∴f(k)-f(0)=(k-1)ek-k3+1=(k-1)ek-(k-1)(k2+k+1)=(k-1)(ek-k2-k-1)
令h(k)=ek-k2-k-1h′(k)=ek-2k-1h′′(k)=ek-2=0
∴k=ln2在($\frac{1}{2}$,1]上先減后增h′(1)=e-3<0,h′(${\frac{1}{2}}$)=$\sqrt{e}$-2<0
∴h′(k)max<0,即h(k)單調遞減∴h(k)max=h(${\frac{1}{2}}$)=$\sqrt{e}$-$\frac{1}{4}$-$\frac{3}{2}$=$\sqrt{e}$-$\frac{7}{4}$
又∵e-$\frac{49}{16}$<0∴f(k)-f(0)>0.
∴f(x)max=f(k)=(k-1)ek-k3=(k-1)ek-k3.
點評 本題的精華點在于導函數與原函數的穿插運用,注意圖象中導函數與原函數的圖象的應用,考查計算能力,轉化思想的應用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | “x>2”是”x2-x-2>0”必要條件 | B. | “$\overrightarrow{a}$•$\overrightarrow$=0”是“$\overrightarrow{a}$⊥$\overrightarrow$”充要條件 | ||
C. | ?x∈R,x2+$\frac{1}{{{x^2}+1}}$≥1 | D. | ?x∈R,cosx+sinx>2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2016 | B. | 0 | C. | -2 | D. | $\frac{1}{2016}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<-2或x>1} | B. | {x|-2<x<1} | C. | {x|x<-1或x>2} | D. | {x|-1<x<2} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com