已知四面體P-ABC,PA⊥平面ABC,若PA=2,AB=BC=AC=
6
,則該四面體的外接球的體積為( 。
A、
3
π
B、2π
C、2
2
π
D、4
3
π
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:求出△ABC的外接圓的半徑,可得四面體的外接球的半徑,即可求出該四面體的外接球的體積.
解答: 解:∵AB=BC=AC=
6
,
∴△ABC的外接圓的半徑為
2

∵PA⊥平面ABC,PA=2,
∴四面體的外接球的半徑為
2+1
=
3
,
∴四面體的外接球的體積為
4
3
π×(
3
)3
=4
3
π

故選:D.
點(diǎn)評(píng):本題考查四面體的外接球的體積,考查學(xué)生的計(jì)算能力,確定四面體的外接球的半徑是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果
a
b
=
a
c
a
0
,那么( 。
A、
b
=
c
B、
b
c
C、
b
c
D、
b
c
a
方向上的投影相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個(gè)數(shù)是( 。
1
5
是非整數(shù);
②5是10的約數(shù)或是26的約數(shù);
③邏輯聯(lián)結(jié)詞有“或”“非”“且”等;
④3≥2.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、D1C1上的動(dòng)點(diǎn),點(diǎn)G為正方形B1BCC1的中心.則空間四邊形AEFG在該正方體各個(gè)面上的正投影所構(gòu)成的圖形中,面積的最大值為( 。
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC 的三邊長(zhǎng)分別為a,b,c,面積為s.則△ABC的內(nèi)切圓半徑 r=
2s
a+b+c
;類似的,若四面體ABCD的四個(gè)面的面積分別為s1,s2,s3,s4,體積為V,則四面體ABCD的內(nèi)切球半徑r為(  )
A、
3v
s1s2s3s4
B、
3v
s1+s2+s3+s4
C、
2v
s1+s2+s3+s4
D、
2v
s1s2s3s4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有二種產(chǎn)品,合格率分別為0.90,0.95,各取一件進(jìn)行檢驗(yàn),恰有一件不合格的概率為(  )
A、0.45B、0.14
C、0.014D、0.045

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=4且向量
a
b
的夾角是
π
6
,則向量
a
b
方向上的投影是( 。
A、-
3
2
B、
3
2
C、-
3
3
2
D、
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(15,25]內(nèi)的所有實(shí)數(shù)中隨機(jī)取一個(gè)實(shí)數(shù)a,則這個(gè)實(shí)數(shù)滿足17<a<20的概率是( 。
A、
3
10
B、
7
10
C、
4
10
D、
6
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,△PAB為正三角形,且面PAB⊥面ABCD,四邊形ABCD為直角梯形,且AD∥BC,∠BCD=
π
4
,AD=1,BC=2,E為棱PC中點(diǎn).
(1)求證:DE∥平面PAB;
(2)求證:面PAB⊥面PBC.

查看答案和解析>>

同步練習(xí)冊(cè)答案