在區(qū)間(15,25]內(nèi)的所有實數(shù)中隨機取一個實數(shù)a,則這個實數(shù)滿足17<a<20的概率是(  )
A、
3
10
B、
7
10
C、
4
10
D、
6
10
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:分別計算出區(qū)間(15,25]的長度,區(qū)間(17,20)的長度,代入幾何概型概率計算公式,即可得到答案.
解答: 解:由于試驗的全部結(jié)果構(gòu)成的區(qū)域長度為25-15=10,
構(gòu)成該事件的區(qū)域長度為20-17=3,
所以概率為
3
10

故選:A..
點評:本題主要考查幾何概型的概率計算.其中根據(jù)已知條件計算出基本事件總數(shù)對應的幾何量的大小,和滿足條件的幾何量的大小是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=4y上一點A的縱坐標為3,則點A與拋物線焦點的距離為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四面體P-ABC,PA⊥平面ABC,若PA=2,AB=BC=AC=
6
,則該四面體的外接球的體積為( 。
A、
3
π
B、2π
C、2
2
π
D、4
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x
+
a
3x
5展開式的常數(shù)項為80,則a的值為( 。
A、1
B、2
C、
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在圓心角為直角的扇形OAB中,隨機投入一點,則該點落入三角形區(qū)域(陰影部分)的概率為( 。
A、
1
B、
π
4
C、
2
π
D、
1
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF.連接DF,G為DF的重點,連接EG,CG,EC,求證:|
EG
|=|
CG
|,
EG
CG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
,
c
是同一平面內(nèi)的三個向量,其中
a
=(1,2).
(Ⅰ)若|
c
|=2
5
,且
c
a
,求向量
c
;
(Ⅱ)若|
b
|=
3
5
2
,且
a
+2
b
與2
a
-
b
垂直,求
a
b
的夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二階矩陣A,B對應的變換對圓的區(qū)域作用結(jié)果如圖所示.
(Ⅰ)請寫出一個滿足條件的矩陣A,B;
(Ⅱ)利用(Ⅰ)的結(jié)果,計算C=BA,并求出曲線x-y-1=0在矩陣C對應的變換作用下的曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(a>0).
(Ⅰ)若f(x)在x=2處的切線與直線2x+3y+1=0垂直,求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

同步練習冊答案