分析 把函數(shù)y=cos($\frac{π}{2}$-2x)的圖象的對(duì)稱中心向左平移$\frac{π}{6}$個(gè)單位,可得函數(shù)y=sin(ωx+φ)的對(duì)稱中心.
解答 解:對(duì)于函數(shù)y=cos($\frac{π}{2}$-2x)=sin2x,令2x=kπ,求得x=$\frac{kπ}{2}$,
可得它的圖象的對(duì)稱中心為($\frac{kπ}{2}$,0),k∈Z.
根據(jù)題意,把此對(duì)稱中心($\frac{kπ}{2}$,0),k∈Z,向左平移$\frac{π}{6}$個(gè)單位,
可得函數(shù)y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象對(duì)稱中心,
故函數(shù)y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象對(duì)稱中心為($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故答案為:($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{11}{3}$ | C. | $\frac{19}{6}$ | D. | $\frac{37}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n | B. | 2 | C. | 2n | D. | $\frac{n}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{31}{5}$ | B. | $\frac{32}{5}$ | C. | 6 | D. | 7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com