6.在△ABC中,已知a=3,b=4,c=$\sqrt{37}$,則△ABC的面積是3$\sqrt{3}$.

分析 根據(jù)余弦定理求出cosC,根據(jù)同角三角函數(shù)的關(guān)系得出sinC,則S=$\frac{1}{2}absinC$.

解答 解:由余弦定理得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{3}}{2}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×3×4×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
故答案為3$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了余弦定理,三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=3x,那么f(-2)的值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)y=f(x)x∈[0,1]同時(shí)滿足下列三個(gè)條件:①對(duì)任意的x∈[0,1],總有f(x)≥0;②f(1)=1;③任意x1,x2∈[0,1],當(dāng)x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立,我們就稱f(x)為“穩(wěn)定函數(shù)”.請(qǐng)根據(jù)上述信息解決以下問題:
(1)已知h(x)是穩(wěn)定函數(shù),求h(0)的值;
(2)若函數(shù)g(x)=ax-1(a>0且a≠1),問是否存在實(shí)數(shù)a,使得g(x)是穩(wěn)定函數(shù)?請(qǐng)說明理由;
(3)已知f(x)是穩(wěn)定函數(shù),存在x0∈[0,1],使得f(x0)∈[0,1]且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.平面直角坐標(biāo)系中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的兩點(diǎn)M,N,點(diǎn)P(2,1)為線段MN的中點(diǎn),橢圓的離心率為$\frac{\sqrt{2}}{2}$.
(1)求直線MN的方程;
(2)若F1是橢圓C右焦點(diǎn),且$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$=-$\frac{1}{3}$,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,該程序運(yùn)行后輸出的結(jié)果為( 。
A.7B.11C.25D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=cos($\frac{π}{2}$-2x)的圖象,則函數(shù)y=sin(ωx+φ)的對(duì)稱中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow$為共線向量,則m+n的值為( 。
A.7B.$\frac{5}{2}$C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)幾何體的三視圖如圖,則該幾何體的體積為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知bc=60,S△ABC=15$\sqrt{3}$.則A為( 。
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

同步練習(xí)冊(cè)答案