分析 根據(jù)sin(α+$\frac{π}{3}$)求出cos(α+$\frac{π}{3}$)以及sin2(α+$\frac{π}{3}$)、cos2(α+$\frac{π}{3}$)的值,
再利用cos(2α+$\frac{5π}{12}$)=cos[(2α+$\frac{2π}{3}$)-$\frac{π}{4}$],即可求出結(jié)果.
解答 解:α為鈍角,且sin(α+$\frac{π}{3}$)=-$\frac{4}{5}$,
∴π<α+$\frac{π}{3}$<$\frac{3π}{2}$,
∴cos(α+$\frac{π}{3}$)=-$\frac{3}{5}$,
∴sin2(α+$\frac{π}{3}$)=2sin(α+$\frac{π}{3}$)cos(α+$\frac{π}{3}$)=2×(-$\frac{4}{5}$)×(-$\frac{3}{5}$)=$\frac{24}{25}$,
cos2(α+$\frac{π}{3}$)=2cos2(α+$\frac{π}{3}$)-1=2×${(-\frac{3}{5})}^{2}$-1=-$\frac{7}{25}$;
∴cos(2α+$\frac{5π}{12}$)=cos[(2α+$\frac{2π}{3}$)-$\frac{π}{4}$]
=cos(2α+$\frac{2π}{3}$)cos$\frac{π}{4}$+sin(2α+$\frac{2π}{3}$)sin$\frac{π}{4}$
=-$\frac{7}{25}$×$\frac{\sqrt{2}}{2}$+$\frac{24}{25}$×$\frac{\sqrt{2}}{2}$=$\frac{17\sqrt{2}}{50}$.
故答案為:$\frac{17\sqrt{2}}{50}$.
點評 本題考查了同角的三角函數(shù)關(guān)系的應(yīng)用問題,也考查了三角恒等變換的應(yīng)用問題以及公式的靈活運用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{11}$ | B. | $\frac{3}{7}$ | C. | $\frac{8}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com