1.1+x1+x2+…+xn(x≠0)=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

分析 令Sn=1+x1+x2+…+xn(x≠0),分類討論:當(dāng)x=1時(shí),Sn=n+1.當(dāng)x≠1,0時(shí),利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:令Sn=1+x1+x2+…+xn(x≠0),
當(dāng)x=1時(shí),Sn=n+1.
當(dāng)x≠1,0時(shí),Sn=$\frac{1-{x}^{n+1}}{1-x}$.
∴Sn=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)和公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.角α的終邊落在射線y=2x,(x≥0)上.則cosα的值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$y=\frac{{|{{x^2}-1}|}}{x-1}$的圖象與函數(shù)y=2x+b的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)b的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面四組函數(shù)中f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$C.f(x)=x,g(x)=($\sqrt{{x}^{2}}$)2D.f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=3x,那么f(-2)的值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a∈R,f(x)=|x-a|+(1-a)x.
(I)解關(guān)于a的不等式f(2)<0;
(Ⅱ)如果f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=|2x-a|,
(Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2-a|對(duì)?x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=cos($\frac{π}{2}$-2x)的圖象,則函數(shù)y=sin(ωx+φ)的對(duì)稱中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案