2.若α、β∈(0,$\frac{π}{2}$),且有sinα-sinβ=-$\frac{2}{3}$,cosα-cosβ=$\frac{2}{3}$,則tan(α-β)的值為(  )
A.$\frac{2\sqrt{14}}{5}$B.-$\frac{2\sqrt{14}}{5}$C.±$\frac{2\sqrt{14}}{5}$D.±$\frac{5\sqrt{14}}{28}$

分析 吧所給的2個式子平方相加,利用兩角和差的余弦公式求得cos(α-β)=$\frac{5}{9}$,再結(jié)合0<α<β<$\frac{π}{2}$,利用同角三角函數(shù)的基本關(guān)系求得 sin(α-β)的值,可得tan(α-β)的值.

解答 解:由α、β∈(0,$\frac{π}{2}$),sinα-sinβ=-$\frac{2}{3}$,cosα-cosβ=$\frac{2}{3}$,可得0<α<β<$\frac{π}{2}$,
且$\left\{\begin{array}{l}{{sin}^{2}α{+sin}^{2}β-2sinαsinβ=\frac{4}{9}}\\{{cos}^{2}α{+cos}^{2}β-2cosαcosβ=\frac{4}{9}}\end{array}\right.$,兩式相加求得cos(α-β)=$\frac{5}{9}$,
∴sin(α-β)=-$\sqrt{{1-cos}^{2}(α-β)}$=-$\frac{2\sqrt{14}}{9}$,∴tan(α-β)=$\frac{sin(α-β)}{cos(α-β)}$=-$\frac{2\sqrt{14}}{5}$,
故選:B.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知點A(-1,-1)和向量$\overrightarrow a$=(2,3),若$\overrightarrow{AB}$=3$\overrightarrow a$,則點B的坐標是(5,8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點An(n,an)(n∈N*)都在函數(shù)y=ax(a>0,a≠1)的圖象上,則a4+a6與2a5的大小關(guān)系是(  )
A.a4+a6>2a5B.a4+a6<2a5
C.a4+a6=2a5D.a4+a6與2a5的大小與a有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$,若對?a,b,c∈R,都有f(a)+f(b)>f(c)成立,則實數(shù)m的取值范圍是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如果如圖程序執(zhí)行后輸出的結(jié)果是11880,那么在程序UNTIL后面的“條件”應(yīng)為(  ) 
A.i>9B.i>=9C.i<=9D.i<9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,A、B、C、D為四個村莊,要修筑三條公路,將這四個村莊連起來,則不同的修筑方法共有( 。
A.8種B.12種C.16種D.20種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=$\sqrt{3}$cos(2x+α)-sin(2x+α)的圖象關(guān)于直線x=0對稱,則α=( 。
A.α=kπ-$\frac{π}{3}$(k∈Z)B.α=kπ-$\frac{π}{6}$(k∈Z)C.α=kπ+$\frac{π}{3}$(k∈Z)D.α=kπ+$\frac{π}{6}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖所示的是一串黑白相間排列的珠子,若按這種規(guī)律排列下去,那么第36顆珠子的顏色是 ( 。
A.白色B.黑色C.白色的可能性大D.黑色的可能性大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某班級體育課進行一次籃球定點投籃測試,規(guī)定每人最多投3次,每次投籃的結(jié)果相互獨立.在A處每投進一球得3分,在B處每投進一球得2分,否則得0分.將學生得分逐次累加并用X表示,如果X的值不低于3分就判定為通過測試,立即停止投籃,否則應(yīng)繼續(xù)投籃,直到投完三次為止.現(xiàn)有兩種投籃方案:
方案1:先在A處投一球,以后都在B處投;
方案2:都在B處投籃.
已知甲同學在A處投籃的命中率為$\frac{1}{4}$,在B處投籃的命中率為$\frac{4}{5}$.
(Ⅰ)若甲同學選擇方案1,求他測試結(jié)束后所得總分X的分布列和數(shù)學期望E(X);
(Ⅱ)你認為甲同學選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

同步練習冊答案