5.2015年3月份全國(guó)兩會(huì)召開(kāi)后,中國(guó)足球引起重視,某校對(duì)學(xué)生是否喜歡足球進(jìn)行了抽樣調(diào)查,男女生各抽了50名,相關(guān)數(shù)據(jù)如下表所示:
不喜歡足球喜歡足球總計(jì)
男生183250
女生341650
總計(jì)5248100
(1)用分層抽樣的方法在喜歡足球的學(xué)生中隨機(jī)抽取6名,男生應(yīng)該抽取幾名?
(2)在上述抽取的6名學(xué)生中任取2名,求恰有1名女生的概率.
(3)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為性別與喜歡足球有關(guān)系?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K≥k00.0100.0050.001
k06.6357.87910.828

分析 (1)求出抽樣比,由此能求出男生應(yīng)抽取人數(shù).
(2)隨機(jī)抽取6名,有4名男生,2名女生,任取2名,共有${C}_{6}^{2}$=15種方法,恰有1名女生有4×2=8種方法,由此能求出恰有1名女生的概率.
(3)求出K2,與臨界值比較,即可得出結(jié)論.

解答 解:(1)喜歡足球的學(xué)生有48人,隨機(jī)抽取6名,男生應(yīng)該抽取32×$\frac{6}{48}$=4人;
(2)隨機(jī)抽取6名,有4名男生,2名女生,任取2名,共有${C}_{6}^{2}$=15種方法,恰有1名女生有4×2=8種方法,
∴恰有1名女生的概率為$\frac{8}{15}$.
(3)K2=$\frac{100×(18×16-32×34)^{2}}{50×50×48×52}$≈10.256>7.879,
∴在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為性別與喜歡足球有關(guān)系.

點(diǎn)評(píng) 本題考查概率的求法,考查獨(dú)立性檢驗(yàn)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,跳傘塔CD高4,在塔頂測(cè)得地面上兩點(diǎn)A,B的俯角分別是30°,45°,又測(cè)得∠ADB=30°,求AB兩地的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.12B.24C.30D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{sin2x-2{{sin}^2}x}}{sinx}$.
(Ⅰ)求f(x)的定義域及其最大值;
(Ⅱ)求f(x)在(0,π)上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的左、右頂點(diǎn)分別為A,B,F(xiàn)1為左焦點(diǎn),且|AF1|=2,又橢圓C過(guò)點(diǎn)$(0,2\sqrt{3})$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)P和Q分別在橢圓C和圓x2+y2=16上(點(diǎn)A,B除外),設(shè)直線(xiàn)PB,QB的斜率分別為k1,k2,若k1=$\frac{3}{4}{k_2}$,證明:A,P,Q三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,-$\frac{π}{2}<φ<\frac{π}{2})$的圖象關(guān)于直線(xiàn)x=$\frac{2π}{3}$對(duì)稱(chēng),它的最小正周期為π,則( 。
A.f(x)的圖象過(guò)點(diǎn)$(0,\frac{1}{2})$B.f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對(duì)稱(chēng)中心是$({\frac{5π}{12},0})$D.f(x)的一個(gè)對(duì)稱(chēng)中心是$({\frac{π}{6},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知區(qū)域Ω={(x,y)|$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,區(qū)域A={(x,y)|0≤y≤$\frac{1}{2}$e-|x|,x∈[-1,1],在Ω內(nèi)隨機(jī)投擲一點(diǎn)M,則點(diǎn)M落在區(qū)域A內(nèi)的概率是( 。
A.$\frac{1}{2}$(1-$\frac{1}{e}$)B.$\frac{1}{4}$(1-$\frac{1}{e}$)C.$\frac{1}{e}$D.1-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在極坐標(biāo)系中曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ-cosθ=0,點(diǎn)$M(1\;,\frac{π}{2})$.以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系.斜率為-1的直線(xiàn)l過(guò)點(diǎn)M,且與曲線(xiàn)C交于A,B兩點(diǎn).
(Ⅰ)求出曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的參數(shù)方程;
(Ⅱ)求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)F1、F2是雙曲線(xiàn)x2-$\frac{{y}^{2}}{24}$=1的兩個(gè)焦點(diǎn),P是雙曲線(xiàn)上的一點(diǎn),且3|PF1|=4|PF2|,則△PF1F2的周長(zhǎng)24.

查看答案和解析>>

同步練習(xí)冊(cè)答案