4.計(jì)算:|$\frac{{{(1-i)}^{10}(3-4i)}^{4}}{{(-\sqrt{3}+i)}^{8}}$|.

分析 根據(jù)復(fù)數(shù)模的混合運(yùn)算即可求出.

解答 解:|$\frac{{{(1-i)}^{10}(3-4i)}^{4}}{{(-\sqrt{3}+i)}^{8}}$|=|$\frac{|1-i{|}^{10}||3-4i{|}^{4}}{|-\sqrt{3}+i{|}^{8}}$=$\frac{{\sqrt{2}}^{10}•{5}^{4}}{{2}^{8}}$=$\frac{625}{8}$

點(diǎn)評 本題考查了復(fù)數(shù)的混合運(yùn)算和復(fù)數(shù)的模的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=-2,a2=3,且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,則數(shù)列{$\frac{{a}_{n}}{3n-5}$}的前n項(xiàng)和Sn=$\frac{1}{2}$(3n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=|x-1|,則${∫}_{-2}^{2}$f(x)dx的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對于集合{θ1,θ2,…,θ3}(n∈N*,n>2)及常數(shù)θ0,稱$\frac{2}{n}[co{s}^{2}({θ}_{1}-{θ}_{0})+co{s}^{2}({θ}_{2}-{θ}_{0})+…+co{s}^{2}({θ}_{n}-{θ}_{0})]$為集合{θ1,θ2,…,θ3}相對于常數(shù)θ0的“余弦方差”,那么集合{$\frac{π}{3}$,$\frac{2π}{3}$,π}相對于常數(shù)α的“余弦方差”的值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,an+1=-$\frac{1}{2}$an+1,試歸納出這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(m,2).$\overrightarrow{a}$⊥($\overrightarrow{a}$十2$\overrightarrow$).$\overrightarrow{c}$與$\overrightarrow$的夾角為$\frac{3π}{4}$,$\overrightarrow•\overrightarrow{c}$=-13.
(1)求實(shí)數(shù)m的值;
(2)求|$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$的弦被點(diǎn)(4,2)平分,求這條弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,若目標(biāo)函數(shù)z=4ax+3by(a>0,b>0)最大值為12,則$\frac{1}{a}+\frac{1}$的最小值為(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)長方體底面為正方形且邊長為4,高為h,若這個(gè)長方體能裝下8個(gè)半徑為1的小球和一個(gè)半徑為2的大球,則h的最小值為( 。
A.8B.2+2$\sqrt{7}$C.2+2$\sqrt{5}$D.6

查看答案和解析>>

同步練習(xí)冊答案