14.如圖所示的分?jǐn)?shù)三角形,稱為“萊布尼茨三角形”.這個三角形的規(guī)律是:各行中的每一個數(shù),都等于后面一行中與它相鄰的兩個數(shù)之和(例如第4行第2個數(shù)$\frac{1}{12}$等于第5行中的第2個數(shù)$\frac{1}{20}$與第3個數(shù)$\frac{1}{30}$之和).則
在“萊布尼茨三角形”中,第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和為( 。
A.5010B.5020C.10120D.10130

分析 將楊暉三角形中的每一個數(shù)Cnr都換成分?jǐn)?shù)$\frac{1}{(n+1){C}_{n}^{r}}$,就得到萊布尼茨三角形.楊暉三角形中第n(n≥2)行第m個數(shù)字是Cn-1 m-1,即可求出第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和.

解答 解:將楊暉三角形中的每一個數(shù)Cnr都換成分?jǐn)?shù)$\frac{1}{(n+1){C}_{n}^{r}}$,就得到萊布尼茨三角形.
∵楊暉三角形中第n(n≥2)行第m個數(shù)字是Cn-1 m-1,
∴第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和為10(C91+C92+…+C97)=5020
故選:B.

點(diǎn)評 本題考查歸納推理,解題的關(guān)鍵是通過觀察分析歸納將楊暉三角形中的每一個數(shù)Cnr都換成分?jǐn)?shù)$\frac{1}{(n+1){C}_{n}^{r}}$,就得到萊布尼茨三角形,考查學(xué)生的觀察分析和歸納能力,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=$\frac{2cosθ}{si{n}^{2}θ}$
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖三角形數(shù)陣中,從第三行起,每行都是1為首項,公比為2的等比數(shù)列.求數(shù)陣的前n行各項之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,則z=2x+y的最大值是( 。
A.10B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)命題p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命題q:?x>0,x+$\frac{1}{x}$≥2,則下列命題為真命題的是( 。
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=$\frac{sinx}{|tanx|}$(0<x<π,x≠$\frac{π}{2}$)的大致圖象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.古希臘數(shù)學(xué)家把1,3,6,10,15,21,…叫做三角形,它有一定的規(guī)律性,第2016個三角形與第2015個三角形的差為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于x的不等式x2+ax-2<0在區(qū)間[1,4]上有解,則實數(shù)a的取值范圍為( 。
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C的極坐標(biāo)方程是ρ=4cosθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+\frac{4}{5}t}\\{y=1+\frac{3}{5}t}\end{array}\right.$(t為參數(shù)),以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程、直線l的參數(shù)方程化為普通方程;
(2)若直線l與曲線C交于M、N兩點(diǎn),求線段MN的長度.

查看答案和解析>>

同步練習(xí)冊答案