已知函數(shù)f(x)=2x2-mx-5的導(dǎo)函數(shù)為f′(x),若x∈(-∞,-1)時,f'(x)<0;f′(-1)=0;x∈(-1,+∞)時,f′(x)>0,則f(1)=(  )
A、25B、17C、-7D、1
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)條件利用f′(-1)=0,求出m的值,即可得到結(jié)論.
解答: 解:∵f(x)=2x2-mx-5的導(dǎo)函數(shù)為f′(x)=4x-m,
∴由f′(-1)=0得-4-m=0,即m=-4,滿足條件,
則f(x)=2x2+4x-5,
則f(1)=2+4-5=1,
故選:D
點評:本題主要考查函數(shù)值的計算,根據(jù)導(dǎo)數(shù)公式以及條件求出m的值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個樣本數(shù)據(jù)按從小到大的順序排列為:13,14,19,x,23,27,28,32,其中,中位數(shù)是22,則x等于(  )
A、21B、22C、23D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=sinx+cos5,則該函數(shù)在點(5,f(5))處切線的斜率等于( 。
A、sin5+cos5
B、cos5
C、sin5
D、sin5-cos5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形ABC的外接圓的圓心為O,半徑為R,已知∠A=30°且
AB
|AB|
cosB+
AC
|AC|
cosC=
m
R
AO
,則m=(  )
A、-
3
2
B、
3
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于推理:若a>b,則a2>b2,因為2>-2,則22>(-2)2,即4>4,下列說法正確的是( 。
A、大前提錯誤
B、小前提錯誤
C、推理正確
D、不是演繹推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某一班的7名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班7名學(xué)生成績的平均分是81,乙班7名學(xué)生成績的中位數(shù)是78.
(1)求出x,y的值,且分別求甲、乙兩個班中7名學(xué)生成績的方差S12、S22,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選哪一個班的學(xué)生參加決賽?
(2)從成績在80分以上的學(xué)生中隨機抽取2名,求甲班至少有1名學(xué)生被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三階行列式
.
-2 3    4
01   -1
1x   -3
.
,其中第二行,第三列元素的代數(shù)余子式的值等于1,則其中的元素x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四面體ABCD的棱BD長為2,其余各棱長均為
2
,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB,PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若PA=AD,求二面角P-DC-A的平面角的大小.

查看答案和解析>>

同步練習(xí)冊答案