分析 找出ω的值,代入周期公式求出最小正周期,根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)遞增區(qū)間,根據(jù)正弦函數(shù)的對稱性求出對稱中心,再根據(jù)正弦函數(shù)的值域求出直線函數(shù)取得最大值時x的值,即可做出判斷.
解答 解:函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),
∵ω=2,
∴T=$\frac{2π}{2}$=π,選項①正確;
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得:-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,x∈Z,
則f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上單調(diào)遞增,選項②正確;
令2x+$\frac{π}{6}$=kπ,k∈Z,得到x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
∴函數(shù)f(x)的圖象不關于點($\frac{π}{12}$,0)成中心對稱圖形,選項③錯誤;
當2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,即x=kπ+$\frac{π}{6}$,k∈Z時,函數(shù)取得最大值,故選項④錯誤,
則成立得結(jié)論序號為①②.
故答案為:①②
點評 此題考查了命題的真假判斷與應用,以及三角函數(shù)的性質(zhì),熟練掌握正弦函數(shù)的圖象與性質(zhì)是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (-∞,1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{17}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{17}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com