2.在△ABC中,已知a=4,b=x,A=60°,如果解該三角形有兩解,則( 。
A.x>4B.0<x≤4C.x≤$\frac{8\sqrt{3}}{3}$D.4<x<$\frac{8\sqrt{3}}{3}$

分析 結(jié)合圖象可得如解該三角形有兩解,則必須有:bsinA<a<b,代入已知即可得解.

解答 解:如圖所示:
∵如果解該三角形有兩解,則必須滿(mǎn)足:CD<BC<AC,既有:bsinA<a<b,
∴xsin60°<4<x.
∴可解得:4<x<$\frac{8\sqrt{3}}{3}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)任意實(shí)數(shù)x,y定義運(yùn)算x?y=$\left\{\begin{array}{l}{x(x≥y)}\\{y(x<y)}\end{array}\right.$設(shè)a=$\frac{ln2}{4}$,b=$\frac{ln3}{9}$,c=$\frac{ln5}{25}$.則b?a?c的值是( 。
A.aB.bC.cD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{OA}$=(2,-1),$\overrightarrow{OB}$=(3,2),$\overrightarrow{OC}$=(M,2M+1),若點(diǎn)A,B,C能構(gòu)成三角形,
(1)求實(shí)數(shù)m滿(mǎn)足的條件;
(2)若△ABC為直角三角形,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|x2-3x+2=0},B={x|mx-1=0},若B?A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)數(shù)列{(-1)n}的前n項(xiàng)和為Sn,則Sn等于$\left\{\begin{array}{l}{0,n為偶數(shù)}\\{-1,n為奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx,sinx),$\overrightarrow{c}$=(-1,0)
(1)若x=$\frac{π}{3}$,求$\overrightarrow{a}$與$\overrightarrow{c}$的夾角θ;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],f(x)=λ$\overrightarrow{a}$•$\overrightarrow$的最大值為$\frac{1}{2}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若二項(xiàng)式(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的展開(kāi)式的奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為32,則展開(kāi)式的常數(shù)項(xiàng)是-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|x2+(2-a)x+1=0,x∈R},若A⊆{x|x>0},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2-|x|+3,f(|x|)=a有實(shí)根,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案