某學(xué)校在一次運動會上,將要進行甲、乙兩名同學(xué)的乒乓球冠亞軍決賽,比賽實行三局兩勝制.已知每局比賽中,若甲先發(fā)球,其獲勝的概率為
2
3
,否則其獲勝的概率為
1
2

(Ⅰ)若在第一局比賽中采用擲硬幣的方式?jīng)Q定誰先發(fā)球,試求甲在此局獲勝的概率;
(Ⅱ)若第一局由乙先發(fā)球,以后每局由負方先發(fā)球.規(guī)定勝一局記2分,負一局記0分,記ξ為比賽結(jié)束時甲的得分,求隨機變量ξ的分布列及數(shù)學(xué)期望Eξ.
考點:離散型隨機變量的期望與方差,相互獨立事件的概率乘法公式
專題:應(yīng)用題,概率與統(tǒng)計
分析:(Ⅰ)根據(jù)甲先發(fā)球,其獲勝的概率為
2
3
,否則其獲勝的概率為
1
2
,可求甲在此局獲勝的概率;
(Ⅱ)ξ的取值為0,2,4,求出相應(yīng)的概率,即可求隨機變量ξ的分布列及數(shù)學(xué)期望Eξ.
解答: 解:(Ⅰ)P=
1
2
×
2
3
+
1
2
×
1
2
=
7
12
;  …(6分)
(Ⅱ)由題知,ξ的取值為0,2,4,分布列如下:
ξ 0 2 4
P
1
6
1
4
7
12
…(11分)
Eξ=
1
2
+
7
3
=
17
6
.…(13分)
點評:此題考查學(xué)生對于題意的準確理解,以及對于隨機變量的定義的理解及獨立事件及其公式的準確理解及應(yīng)用,此外還考查了期望的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,bc=b2-a2,且B-A=80°,則內(nèi)角C的余弦值為( 。
A、1
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,若復(fù)數(shù)滿足zi=3-2i,則z=( 。
A、z=3+2i
B、z=2-3i
C、z=-2-3i
D、z=-2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+i)(1-mi)=2i(i是虛數(shù)單位),則實數(shù)m的值為( 。
A、±1B、1C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a-bcos(2x+
π
6
)(b>0)的最大值為
3
2
,最小值為-
1
2

(1)求a,b的值;
(2)已知函數(shù)g(x)=-4asin(bx-
π
3
),當g(x)≥-1時求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x+lnx(a∈R,a≠0)
(Ⅰ)當a=2時,求曲線y=f(x)在(1,f(1))處的切線方程;
(Ⅱ)若在區(qū)間[1,+∞)上函數(shù)f(x)的圖象恒在直線y=ax下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-1≤x<6},B={x|m-1≤x≤3m+2},若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在n個人的班級中,選出m個人參加大掃除,其中k個人擦窗戶,其他人拖地板.現(xiàn)有兩種方法選擇人選:①先從班級中選出m人,現(xiàn)從他們當中選出k個人擦窗戶.②先從班級中選出k個人擦窗戶,再從班級剩下的人中選出m-k人拖地板.
(1)寫出每種方法中選人方案數(shù)的數(shù)學(xué)表達式.
(2)你認為這兩種方法選人的方案數(shù)相等嗎?若相等,試證明之;若不相等請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點G是△OAB的重心,過G任作直線PQ分別交OA、OB于點P、Q,若
OP
=m
OA
,
OQ
=n
OB
,mn≠0,則
1
m
+
1
n
=
 

查看答案和解析>>

同步練習冊答案