8.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1),x≥2}\\{e{\;}^{x-1},x<2}\end{array}\right.$,則f(f(2))的值為( 。
A.e2B.log34C.1D.log3e

分析 利用分段函數(shù)的解析式之間求解函數(shù)值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1),x≥2}\\{e{\;}^{x-1},x<2}\end{array}\right.$,
則f(2)=${log}_{3}({2}^{2}-1)$=1.
f(f(2))=f(1)=e1-1=1.
故選:C.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.利用計算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-2>0”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若不等式x2+px+q<0的解集是{x|1<x<2},則不等式$\frac{{x}^{2}+px+q}{{x}^{2}-x+6}$≥0的解集是{x|x≥2或x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l與平面α所成的角為30°,在平面α內(nèi),到直線l的距離為2的點(diǎn)的軌跡是( 。
A.線段B.C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,函數(shù)F(x)的圖象是由指數(shù)函數(shù)f(x)=bx與冪函數(shù)g(x)=xa“拼接”而成,記m=aa,n=ab,p=ba,q=bb則m,n,p,q的大小關(guān)系為p<m<q<n(用“<”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,由$y={x^2},x=0,y=\frac{1}{4}$所圍成陰影部分面積為( 。 
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$y=\frac{-2}{x+2}+1在點(diǎn)(-1,-1)$處的切線方程為(  )
A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(  )
A.y=-x2+5(x∈R)B.y=kx.(x∈R,k∈R,k≠0)
C.y=x3(x∈R)D.$y=-\frac{1}{x}(x∈R,x≠0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1:ax-y+a=0,l2:(2a-3)x+ay-a=0.
(1)若l1∥l2,求a的值;
(2)若l1⊥l2,求a的值.

查看答案和解析>>

同步練習(xí)冊答案