16.已知直線l與平面α所成的角為30°,在平面α內(nèi),到直線l的距離為2的點(diǎn)的軌跡是( 。
A.線段B.C.橢圓D.拋物線

分析 由已知點(diǎn)在以直線l為軸,半徑為2的圓柱上,從而得到點(diǎn)的軌跡是圓柱被與軸成30°的面α截得的橢圓.

解答 解:∵平面α內(nèi)的點(diǎn)P到直線l的距離為2,
∴點(diǎn)P在以直線l為軸,半徑為2的圓柱上,
又∵定直線l與平面α成30°角,點(diǎn)P是面α內(nèi)的一動點(diǎn),
∴P的軌跡是圓柱被與軸成30°的面α截得的橢圓,
故選:C.

點(diǎn)評 本題考查點(diǎn)的軌跡的求法,是中檔題,是一道把空間幾何與平面幾何巧妙結(jié)合在一起的好題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等差數(shù)列{an}中,a1+a5=16,則S5=( 。
A.80B.40C.31D.-31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c(x≤0)}\\{(\frac{1}{2})^{x-1}(x>0)}\end{array}\right.$,若f(-4)=f(0),f(-2)=-2,則函數(shù)F(x)=f(x)-x的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=2x,下列運(yùn)算不正確的是( 。
A.f(x)•f(y)=f(x+y)B.f(x)÷f(y)=f(x-y)C.f(x)•f(y)=f(x•y)D.f(log23)=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)),g(x)=x3+ax2-x+2.
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)a=-1時(shí),求函數(shù)y=g(x)的圖象過點(diǎn)P(1,1)的切線方程;
(3)當(dāng)x∈[1,e]時(shí),討論方程f(x)=0根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b,c是三條不重合的直線,α,β是兩個(gè)不重合的平面,直線l∥α,則(  )
A.a∥c,b∥c⇒a∥bB.a∥β,b∥β⇒a∥bC.a∥c,c∥α⇒a∥αD.a∥l⇒a∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{2}-1),x≥2}\\{e{\;}^{x-1},x<2}\end{array}\right.$,則f(f(2))的值為( 。
A.e2B.log34C.1D.log3e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知三點(diǎn)A(3,5),B(x,7),C(-1,-3)在同一直線上,則x=(  )
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(x,1),且($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=|$\overrightarrow{a}$|,則實(shí)數(shù)x的值為(  )
A.-3B.-2C.0D.-3或0

查看答案和解析>>

同步練習(xí)冊答案