14.若集合P={x|1≤2x<8},Q={1,2,3},則P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

分析 化簡(jiǎn)集合P,再由Q,求出兩集合的交集即可.

解答 解:由20=1≤2x<8=23
∴0≤x<3,
∴集合P=[0,3),
∵Q={1,2,3},
∴P∩Q={1,2},
故選:A.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{2+i}{2-i}$的虛部為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以下四個(gè)命題中,真命題的是( 。
A.?x∈(0,π),使sinx=tanx
B.“對(duì)任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1<0”
C.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)
D.△ABC中,“sinA+sinB=cosA+cosB”是“C=$\frac{π}{2}$”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow b$,則$\frac{1}{m}$+$\frac{8}{n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.
(Ⅰ)求$\overrightarrow{a}$•$\overrightarrow$;
(Ⅱ)若向量λ$\overrightarrow{a}$+2$\overrightarrow$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-2),x≥1}\end{array}\right.$則f(log27)的值為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為非零向量,則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$(  )
A.是三個(gè)向量的數(shù)量積B.是與$\overrightarrow{a}$共線的向量
C.是與$\overrightarrow{c}$共線的向量D.無意義

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各組不等式中同解的是( 。
A.x>6與x(x-3)2>6(x-3)2B.$\sqrt{2x+1}$(x-2)≥0與x≥2
C.x2-3x+3+$\frac{1}{x-3}$>$\frac{x-2}{x-3}$與x2-3x+2>0D.$\frac{x-2}{(x+1)^{2}(x-1)}$>0與x2-3x+2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時(shí)尚,還能增進(jìn)彼此的感情.2015年中秋節(jié)期間,小魯在自己的微信校友群,向在線的甲、乙、丙、丁四位校友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放1個(gè),每個(gè)人搶到的概率相同.
(1)若小魯隨機(jī)發(fā)放了3個(gè)紅包,求甲至少得到1個(gè)紅包的概率;
(2)若丁因有事暫時(shí)離線一段時(shí)間,而小魯在這段時(shí)間內(nèi)共發(fā)放了3個(gè)紅包,其中2個(gè)紅包中各有5元,1個(gè)紅包有10元,記這段時(shí)間內(nèi)乙所得紅包的總錢數(shù)為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案