8.已知函數(shù)f(x)是定義域為R的函數(shù),且f(x)=-f(x+$\frac{3}{2}$),f(-2)=f(-1)=-1,f(0)=2,則f(1)+f(2)+…+f(2016)=( 。
A.-2B.-1C.0D.2

分析 根據(jù)條件可得出f(x)=f(x+3),f(x)是以3為周期的函數(shù);結(jié)合條件判斷f(1)+f(2)+f(3)=0,只需判斷
f(1)+f(2)+…+f(2016)有幾組 f(1)+f(2)+f(3)即可.

解答 解:∵f(x)=-f(x+$\frac{3}{2}$),
∴f(x+$\frac{3}{2}$)=-f(x+3),f(x)=f(x+3),
∴f(x)是以3為周期的函數(shù);
又f(1)=f(-2+3)=f(-2)=-1,f(2)=f(-1+3)=f(-1)=-1,f(3)=f(0+3)=f(0)=2,
∴f(1)+f(2)+f(3)=0,同理,f(4)+f(5)+f(6)=0,…
∴f(1)+f(2)+…+f(2015)+f(2016)
=0
故選C.

點評 本題考查了抽象函數(shù)周期性的判斷和應(yīng)用.難點是對周期性的深刻理解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.經(jīng)過兩點A(2,3),B(-1,x)的直線l1與經(jīng)過點P(2,0)且斜率為1的直線l2平行,則x的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{{{x^2}sinx}}{{{{1.5}^{|x|}}}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a>0,且a≠1,下列函數(shù)中,在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù)的是( 。
A.y=sinaxB.y=logax2C.y=ax-a-xD.y=tanax

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下面各組函數(shù)中為相等函數(shù)的是(  )
A.f(x)=$\sqrt{{{(x-1)}^2}}$,g(x)=x-1B.f(x)=x-1,g(t)=t-1
C.f(x)=$\sqrt{{x^2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$D.f(x)=x,g(x)=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x|x-1|
(1)畫出該函數(shù)的圖象;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)設(shè)0<a<1,求f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.2016°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如果兩條直線l1,l2中的一條斜率不存在,另一個斜率是零,那么l1與l2的位置關(guān)系是垂直.

查看答案和解析>>

同步練習冊答案