分析 (1)當(dāng)a=1時(shí),求函數(shù)的定義域,然后利用導(dǎo)數(shù)求函數(shù)的極值和單調(diào)性.
(2)利用(1)的結(jié)論,求函數(shù)f(x)的最小值以及g(x)的最大值,利用它們之間的關(guān)系證明不等式.
解答 解:(1)a=1時(shí),因?yàn)閒(x)=x-lnx,f′(x)=1-$\frac{1}{x}$,
∴當(dāng)0<x<1時(shí),f′(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞減.
當(dāng)1<x≤e時(shí),f′(x)>0,此時(shí)函數(shù)f(x)單調(diào)遞增.
所以函數(shù)f(x)的極小值為f(1)=1.
(2)因?yàn)楹瘮?shù)f(x)的極小值為1,即函數(shù)f(x)在(0,e]上的最小值為1.
又g′(x)=$\frac{1-lnx}{{x}^{2}}$,所以當(dāng)0<x<e時(shí),g′(x)>0,此時(shí)g(x)單調(diào)遞增.
所以g(x)的最大值為g(e)=$\frac{1}{e}$,
所以f(x)min-g(x)max>$\frac{1}{2}$,
所以在(1)的條件下,f(x)>g(x)+$\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查利用函數(shù)的單調(diào)性研究函數(shù)的單調(diào)性問(wèn)題,考查函數(shù)的極值問(wèn)題,本題屬于中檔題..
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=3x-1 | B. | y=-3x-1 | C. | y=3x+1 | D. | y=-2x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈R,lgx=0 | B. | ?x∈R,tanx=0 | C. | ?x∈R,2x>0 | D. | ?x∈R,x2>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com