分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)先求出a,b的關(guān)系,然后利用基本不等式求a+b的最小值.
解答 解:由z=abx+y(a>0,b>0)得y=-abx+z,
作出可行域如圖:
∵a>0,b>0,
∴直線y=-abx+z的斜率為負(fù),且截距最大時(shí),z也最大.
平移直線y=-abx+z,由圖象可知當(dāng)y=-abx+z經(jīng)過(guò)點(diǎn)A時(shí),
直線的截距最大,此時(shí)z也最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,即A(4,5).
此時(shí)z=4ab+5=8,
即ab=$\frac{3}{4}$,
則a+b$≥2\sqrt{ab}$=2$\sqrt{\frac{3}{4}}$=$\sqrt{3}$,
當(dāng)且僅當(dāng)a=b=$\frac{\sqrt{3}}{2}$時(shí)取=號(hào),
故最小值為$\sqrt{3}$,
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為3,無(wú)最小值 | B. | 無(wú)最大值,最小值為3 | ||
C. | 無(wú)最大值,無(wú)最小值 | D. | 無(wú)最大值,最小值為$\frac{33}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{S}_{8}}{{a}_{8}}$ | B. | $\frac{{S}_{9}}{{a}_{9}}$ | C. | $\frac{{S}_{10}}{{a}_{10}}$ | D. | $\frac{{S}_{11}}{{a}_{11}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2b<2a<2 | B. | $0<{log_{\frac{1}{2}}}a<{log_{\frac{1}{2}}}$b | ||
C. | ab<b2<1 | D. | ab<a2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -240 | B. | -160 | C. | 160 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,4) | B. | (-4,2) | C. | (-1,3) | D. | (-3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com