已知數(shù)列滿足:,,(其中為非零常數(shù),).
(1)判斷數(shù)列是不是等比數(shù)列?
(2)求;
(3)當時,令,為數(shù)列的前項和,求.
(1)數(shù)列是等比數(shù)列;(2);(3).

試題分析:(1)將數(shù)列的遞推式進行變形得,從而利用定義得到數(shù)列是等比數(shù)列;(2)在(1)的基礎(chǔ)上先求出數(shù)列的通項公式,再利用累乘法求數(shù)列的通項公式;(3)在(2)的基礎(chǔ)上,將代入數(shù)列的通項公式,從而求出數(shù)列的通項公式,并根據(jù)數(shù)列的通項公式,對、以及進行三種情況的分類討論,前兩種情況利用等差數(shù)列求和即可,在最后一種情況下利用錯位相減法求數(shù)列的前項和,最后用分段的形式表示數(shù)列的前項和.
試題解析:(1)由,得
,則
,(非零常數(shù)),
數(shù)列是等比數(shù)列.
(2)數(shù)列是首項為,公比為的等比數(shù)列,
,即
時,
,
滿足上式,
(3),
時,
,              ①
    ②
,即時,①②得:


而當時,
時,
綜上所述,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環(huán)境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區(qū)采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為=100萬輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長量的乘積成正比,比例系數(shù)為其中=200萬.
(1)證明:;
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬輛內(nèi).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足,且對任意非負整數(shù)均有:.
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是曲線C:上的一點(其中),過點作與曲線C在處的切線垂直的直線軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;再過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;如此繼續(xù)下去,得一系列的點、、、、。(其中

(1)求數(shù)列的通項公式。
(2)若,且是數(shù)列的前項和,是數(shù)列的前

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的通項公式為,在等差數(shù)列數(shù)列中,,且,又、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列的前項和記為,,.
(1)求數(shù)列的通項公式;
(2)等差數(shù)列的前項和有最大值,且,又、、成等比數(shù)列,求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,公比為,且.
(1)求;(2)設(shè)數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為等差數(shù)列,為等比數(shù)列,其公比,若,則(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案