12.某幾何體的三視圖如圖所示,則該幾何體的面積是$12+2\sqrt{2}+2\sqrt{6}$,體積是4.

分析 由三視圖知該幾何體是四棱錐,由三視圖求出幾何元素的長度,由位置關(guān)系和勾股定理求出各個棱長,由條件和面積公式求出各個面的面積,加起來求出幾何體的表面積,由錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是一個四棱錐,如圖:
且PA⊥平面ABCD,PA=2,
底面是一個直角梯形,AD⊥CD、AD∥BC,BC=CD=2、AD=4,
取AD的中點E,連接BE,則BE∥CD,AE=BE=2,
∴由勾股定理得,AB=PC=BD=2$\sqrt{2}$,PB=$2\sqrt{3}$,PA=2$\sqrt{5}$,
∵PB2=BC2+PC2,PA2=AB2+PB2,∴AB⊥PB,PC⊥BC,
∴幾何體和表面積:
S=$\frac{1}{2}×(2+4)×2+\frac{1}{2}×2×2+\frac{1}{2}×2×4$+$\frac{1}{2}×2×2\sqrt{2}+\frac{1}{2}×2\sqrt{2}×2\sqrt{3}$
=$12+2\sqrt{2}+2\sqrt{6}$,
幾何體的體積V=$\frac{1}{3}×\frac{1}{2}×(2+4)×2$×2=4,
故答案為:$12+2\sqrt{2}+2\sqrt{6}$;4.

點評 本題考查三視圖求幾何體的體積以及表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)z滿足(1-2i)z=|1+2i|•(1-i),則復(fù)數(shù)z的虛部為( 。
A.-$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$iC.$\frac{\sqrt{5}}{5}$D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(1,x-1),若($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,則|$\overrightarrow a$-2$\overrightarrow b$|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知球半徑為10cm,球內(nèi)接圓柱的底面半徑為r,高為h,則r和h為何值時,球內(nèi)接圓柱的體積最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一邊長為3的正三角形的三個頂點都在球O的表面上,若球心O到此正三角形所在的平面的距離為$\sqrt{7}$,則球O的表面積為40π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,A(1,2),B(-3,4).
(Ⅰ)求向量$\overrightarrow{AB}$的坐標(biāo)及|$\overrightarrow{AB}$|;
(Ⅱ)求向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}a-|x-a|,x≥0\\|x+a|-a,x<0\end{array}$,其中常數(shù)a>0,給出下列結(jié)論:
①f(x)是R上的奇函數(shù);
②當(dāng)a≥4時,f(x-a2)≥f(x)對任意的x∈R恒成立;
③f(x)的圖象關(guān)于x=a和x=-a對稱;
④若對?x1∈(-∞,-2),?x2∈(-∞,-1),使得f(x1)f(x2)=1,則a∈($\frac{1}{2}$,1).
其中正確的結(jié)論有①.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,則|QF|=$\frac{8}{3}$,點Q的坐標(biāo)為($\frac{2}{3}$,±$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體AC1中,E,F(xiàn)分別是線段BC,CD1的中點,則直線A1B與直線EF的位置關(guān)系是( 。
A.相交B.異面C.平行D.垂直

查看答案和解析>>

同步練習(xí)冊答案