2.設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),f(x+$\frac{3}{2}$)=$\frac{1}{f(x)}$,當(dāng)0≤x≤1時(shí)有f(x)=2x,則f(8.5)=-1.

分析 由f(x+$\frac{3}{2}$)=$\frac{1}{f(x)}$,可得f(x+3)=f(x),得函數(shù)的周期為3,然后利用周期性和奇偶性進(jìn)行數(shù)值轉(zhuǎn)化即可.

解答 解:由f(x+$\frac{3}{2}$)=$\frac{1}{f(x)}$,可得f(x+3)=f(x),所以函數(shù)的周期是3,
所以f(8.5)=f(5.5)=f(2.5)=f(-0.5).
因?yàn)楹瘮?shù)f(x)為奇函數(shù),
所以f(-0.5)=-f(0.5)=-2×0.5=-1.
所以f(8.5)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和周期性的應(yīng)用,要求熟練掌握函數(shù)的性質(zhì)的綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則由點(diǎn)(b,c)確定的平面區(qū)域的面積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若存在滿足$\frac{1}{x}$+$\frac{m}{y}$=1(m>0)的變量x,y(x,y>0),使得因式x+y-$\sqrt{{x}^{2}+{y}^{2}}$有最大值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求證:對(duì)任意α,β有cos(α+β)=cosαcosβ-sinαsinβ和cos2α=2cos2α-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是等差數(shù)列.
(1)2a5=a3+a7是否成立?2a5=a1+a9呢?為什么?
(2)2an=an-1+an+1(n>1)是否成立?據(jù)此你能得出什么結(jié)論?
2an=an-k+an+k(n>k>0)是否成立?你又能得出什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(2sin(x-$\frac{π}{4}$),2cos(x-$\frac{π}{4}$)),$\overrightarrow{n}$=(sin(x+$\frac{π}{4}$),$\sqrt{3}$cos(x-$\frac{π}{4}$)),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\sqrt{3}$.
(1)求函數(shù)f(x)的最大值及取得最大值時(shí)相應(yīng)的x的集合;
(2)在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,且滿足a=2$\sqrt{7}$,b+c=6,f(A)=-1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示莖葉圖記錄了甲、乙兩組各5名同學(xué)參加社會(huì)實(shí)踐活動(dòng)的次數(shù).
(Ⅰ)從甲組5名同學(xué)中隨機(jī)選2名,恰有一人參加社會(huì)實(shí)踐活動(dòng)的次數(shù)大于10的概率.
(Ⅱ)分別從甲、乙兩組中任取一名同學(xué),求這兩名同學(xué)參加社會(huì)實(shí)踐活動(dòng)次數(shù)和為19的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}cos(x-\frac{π}{2}),x∈[0,π]\\{log_{2015}}\frac{x}{π},x∈(π,+∞)\end{array}$,若有三個(gè)不同的實(shí)數(shù)a,b,c,使得f(a)=f(b)=f(c),則a+b+c的取值范圍為( 。
A.(2π,2016π)B.($\frac{3π}{2},\frac{4031π}{2}$)C.(2π,2015π)D.(π,2015π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段)頻數(shù)(人數(shù))頻率
[60,70)9x
[70,80)y0.38
[80,90)160.32
[90,100)zs
合   計(jì)p1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽,若高一•二班有甲、乙兩名同學(xué)取得決賽資格.現(xiàn)從中選出2人擔(dān)任組長(zhǎng),求至少有一人來自高一•二班的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案