等比數(shù)列{an}中,a1+a2+a3=-9,a2+a3+a4=6,則a3+a4+a5=
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比為q,利用6=a2+a3+a4=q(a1+a2+a3)=-9q,解得q.再利用a3+a4+a5=q(a2+a3+a4)即可得出.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
∵a1+a2+a3=-9,a2+a3+a4=6,
∴6=a2+a3+a4=q(a1+a2+a3)=-9q,
∴q=-
2
3

∴a3+a4+a5=q(a2+a3+a4)=-
2
3
×6
=-4,
故答案為:-4.
點(diǎn)評(píng):本題考查了等比數(shù)列的相同公式及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線y2=4x上的點(diǎn),設(shè)點(diǎn)P到y(tǒng)軸的距離為d1,到圓C:(x+3)2+(y-3)2=4上的動(dòng)點(diǎn)Q距離為d2,則d1+d2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p方程:x2+mx+1=0有兩個(gè)不等的實(shí)根,命題q:方程4x2+4(m+2)x+1=0無實(shí)根.若“p或q”為真命題,“p且q”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
3
≤x≤
π
4
,f(x)=tan2x+2tanx+2,求f(x)的最值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x1,x2,x3,x4},B={x∈R+|2(x-12)sin
πx
4
=1},且A是B的子集,則x1+x2+x3+x4的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Acosx-B的最大值是5,最小值是1,求實(shí)數(shù)
A
B
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+cos20°
sin20°
-4sin10°tan80°=( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上任意一點(diǎn)P到點(diǎn)F(
3
,0)和直線l:x=
4
3
的距離之比為
3
2

(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點(diǎn),以AB為直徑的圓過曲線C的中心,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin(x-
π
6
)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
ω
(ω>1)倍,再向左平移
π
3
個(gè)單位長度,所得的圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則ω的最小值為(  )
A、
3
2
B、3
C、
7
2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案