分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計算f′(-2)=0,求出a的值,從而求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.
解答 解:(Ⅰ)f′(x)=x2-a,
若函數(shù)f(x)=$\frac{1}{3}$x3-ax+4在x=-2時取得極值,
則f′(-2)=4-a=0,解得:a=4,
a=4時,f′(x)=(x+2)(x-2),
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在(-∞,-2)遞增,在(-2,2)遞減,在(2,+∞)遞增;
(Ⅱ)由(Ⅰ)得:f(x)=$\frac{1}{3}$x3-4x+4,
f(x)在[0,2)遞減,在(2,3]遞增,
∴f(x)在最小值是f(2)=-$\frac{4}{3}$,f(x)的最大值是f(3)=1.
點評 本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | .1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 上午生產(chǎn)情況正常,下午生產(chǎn)情況異常 | |
B. | 上午生產(chǎn)情況異常,下午生產(chǎn)情況正常 | |
C. | 上、下午生產(chǎn)情況均正常 | |
D. | 上、下午生產(chǎn)情況均異常 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3) | B. | (-∞,-3] | C. | [2,3) | D. | [-3,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com